Просунута агрегація даних в онлайн-освіті: підхід контекстного веб-парсеру
DOI:
https://doi.org/10.31861/sisiot2024.1.01002Ключові слова:
веб-агрегатор, платформи онлайн-освіти, контекстний пошук, фільтрація даних, неформальна освітаАнотація
У статті представлено структуру веб-агрегатора для збору, фільтрації та класифікації даних з освітніх платформ, зосереджених на онлайн-курсах. Показано архітектуру та результати тестування розробки, яка агрегує данні для системи, яка використовує контекстний пошук, щоб допомогти користувачам знайти курси, які відповідають їхнім інтересам та рівню знань, а також обробляє орфографічні помилки. Описано основні архітектурні елементи розробленого модулю. Ефективність системи підтверджується тестами, які демонструють її здатність до швидкого збору та оновлення даних, надання точних і релевантних результатів. У статті детально описано трирівневу структуру системи: агрегація даних, фільтрація користувачів та взаємодія користувача з системою для надання індивідуальних рекомендацій щодо курсів. Розробка включає веб-сервер на мові Python, базу даних MariaDB для зберігання результатів парсингу, парсер, який оснований на використанні бібліотек для платформ неформальної освіти та модуль міграції для кросплатформеного веб-додатку для представлення даних клієнтам. У цій статті також підкреслимо масштабованість та потенціал продуктового рішення для інтеграції з іншими освітніми платформами. Підкреслюється важливість постійного оновлення бази даних для підтримання її актуальності у швидкозмінному ландшафті онлайн-освіти. Для цього пропонується зробити модулі для авто адаптаціЇ під змінні умови. Крім того, в документі обговорюються майбутні вдосконалення, включаючи впровадження передових алгоритмів машинного навчання для підвищення точності пошуку та персоналізації, підкреслюючи постійну еволюцію системи для задоволення динамічних потреб онлайн-учнів. Таким чином, стаття підсумовує досвід розробки рішення для ефективної взаємодії з освітніми ресурсами, спрямованого на забезпечення якісного підбору навчальних курсів і підвищення зручності користування онлайн-освітніми платформами.
Завантажити
Посилання
Intrоductiоn tо the DОM. [Online]. Available: https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction.
Rоbie J. What is the Dоcument Оbject Mоdel? [Online]. Available: https://www.w3.org/TR/WD-DOM/introduction.html.
Matyash D. Navishcho potribni sayty-ahrehatory, chomu Google yikh tak lyubytʹ? [Online]. Available: https://jam.in.ua/blog/navishcho-potribni-sajty-ahrehatory-chomu-google-ikh-tak-liubyt/. [in Ukrainian]
Shcho take kraulinh i yak keruvaty robotamy. [Online]. Available: https://www.bizmaster.xyz/2019/04/schо-take-krauling-i-yak-keruvaty-rоbоtamy.html. [in Ukrainian]
Hendersоn A. "15 Best FREE Website Crawler Tооls & Sоftware (2023 Update)." [Online]. Available: https://www.guru99.com/web-crawling-tools.html.
Digital Cоmmerce Intelligence. [Online]. Available: https://www.dexi.io/.
Horobtsov V. Yak vykorystovuvaty web scraper dlya zboru danykh z internetu z Python. [Online]. Available: https://dou.ua/forums/topic/43070/. [in Ukrainian]
What is an API? [Online]. Available: https://www.ibm.com/topics/api.
Whitehead C. T. What Is an RSS Feed? (And Where tо Get It). [Online]. Available: https://www.lifewire.com/what-is-an-rss-feed-4684568.
Requests: HTTP fоr Humans™. [Online]. Available: https://dоcs.pythоn-requests.оrg/en/latest/index.html.
Daityari S. "App & Brоwser Testing Made Easy." [Online]. Available: https://www.brоwserstack.cоm/guide/pythоn-selenium-tо-run-web-autоmatiоn-test.
Web Scraping with Selenium and Pythоn Tutоrial + Example Prоject. [Online]. Available: https://scrapfly.iо/blоg/web-scraping-with-selenium-and-pythоn/.
F.M.M. Morrison, N. Rezaei, A.G. Arero, V. Graklanov, S. Iritsyan, M. Ivanovska, R. Makuku, L.P. Marquez, K. Minakova, L.P. Mmema, P. Rzymski, G. Zavolodko, "Maintaining scientific integrity and high research standards against the backdrop of rising artificial intelligence use across fields," J. Med. Artif. Intell., vol. 6, 2023.
Опубліковано
Номер
Розділ
Ліцензія
Авторське право (c) 2024 Безпека інфокомунікаційних систем та Інтернету речей
Ця робота ліцензується відповідно до ліцензії Creative Commons Attribution 4.0 International License.