Analysis of the Population Vitality Indicator in Ukraine Based on Time Series Modeling

Authors

DOI:

https://doi.org/10.31861/

Keywords:

population vitality indicator,, demographic forecast,, polynomial modeling,, demographic policy,, Ukraine

Abstract

In the current context, Ukraine is facing a demographic challenge characterized by accelerating depopulation, population aging, declining fertility, and a ranger of other crisis phenomena. Under such circumstances, the search for integral indicators enable both quantitative and qualitative assessment of the state and prospects of demographic development in Ukraine has become particularly important. One such indicator is the population vitality index, which is considered a crucial tool for identifying territorial asymmetries and forecasting demographic trends. Unlike absolute or relative quantitative measures of mortality, the vitality index serves as a qualitative metric of demographic balance and enables the assessment of the effectiveness of the natural population reproduction. Its application allows for a deeper understanding of not only mortality rate but also their interrelation with birth rates, and thus with the overall vector of demographic development.

The purpose of the scientific search ‒ is to analyze the temporal dynamics of Ukraine's population vitality index over the period 1990‒2024 and to assess its future trends using statistical methods of approximation and time series modeling. Particular attention is given to identifying key trends, structural breaks, and the factors influencing the country's demographic development. The study also aims to develop forecasts of the vitality index in order to substantiate the need for comprehensive reforms in the area of demographic policy.

The implementation of this research was made possible through the synergy of universal methods of scientific inquire and specialized approaches commonly employed in demography and population geography. These methods not only allow for the description of demographic processes but also enable the modeling of population development trends under various geospatial conditions. The study of the population vitality index itself is conducted using the method of standardization of demographic coefficients, which allows for the elimination of differences in population composition across compared groups.

To describe, analyze and model both mortality processes in general and the population vitality index in particular, we employed econometric modeling techniques along with methods of systematization and statistical analysis, within the framework of mathematical modeling. The visualization of research results was carried out using graphical methods. The multifactorial nature on regional differentiation in the vitality index is reflected through the use of the structural-logical method, while spatial classification of regions was performed using the grouping method.

In examining regional features of demographic balance, Pearson's correlation coefficient was applied to statistically test the hypothesis regarding the relationship between mortality and vitality, which supported the argument concerning the multifactorial nature of the demographic dynamics.

Demographic development in Ukraine is characterized by a persistent downward trend in the population vitality index, which reflects consequences of both long-term structural transformations and large-scale socio-economic disruptions. The analysis of vitality dynamics over the period 1990‒2024 reveals the indicator's high sensitivity to political, economic and security factors, as evidenced by distinct structural breaks within the time series. The most significant declines were recorded during the crisis of the 1990s, after 2014, and throughout 2022‒2024 as a result of a full-scale war.

The application of various types of approximation models ‒ particularly polynomial ones ‒ demonstrated the appropriateness of using a fourth-degree polynomial as a compromise between mathematical precision and the avoidance of statistical distortions associated with higher order models. Forecasting results indicate a continued decline in population vitality, posing a serious risk of deepening demographic depression and necessitating urgent strategic decisions at the national level.

Spatial analysis of the population vitality index reveals considerable territorial asymmetry, with no region in Ukraine currently achieving positive natural population growth. The most adverse indicators are observed in the eastern and northern regions. In our view, this outcome is a direct consequence of overlapping depopulation trends, population aging, migration losses and the impact of military conflict. Some western regions and the capital are in a relatively better position, maintaining comparatively higher birth rates. However, even in these areas, vitality levels remain insufficient to ensure natural population replacement, which is further supported by a weak inverse correlation between mortality and vitality (r = ‒0.1).

The findings of this study underscore the urgent need for the implementation of multi-level demographic reforms aimed at increasing fertility, reducing mortality, and improving overall living conditions. Only through the integration of demographic policy with economic, social and security strategies can the ongoing degradation be halted, demographic stability ensured and the foundations for the country's sustainable development established.

Author Biographies

  • Viktoria Yavorska, Odessa I.I. Mechnikov National Universit

    Department of Economic and Social Geography and Tourism

  • Nadia Melnyk, V. Stefanyk Carpathian National University
    Department of Hotel, Restaurant and Resort Management
  • Andrii MELNYK, Ivano-Frankivsk National Technical University of Oil and Gas
    Department of Tourism, Recreation and Regional Development

References

1. Біткова, Т., & Сінь, Ц. (2025). Поєднання методів моделювання в аналізі демографічних процесів та економічного зростання Китаю. Modeling the development of the economic systems, (2), 22–30. https://doi.org/10.31891/mdes/2025-16-3 [Bitkova, T., & Sin, Ts. (2025). Poiednannia metodiv modeliuvannia v analizi demohrafichnykh protsesiv ta ekonomichnoho zrostannia Kytaiu. Modeling the development of the economic systems, (2), 22–30. https://doi.org/10.31891/mdes/2025-16-3].

2. Державна служба статистики України. URL: https://ukrstat.gov.ua/ (дата звернення 01.07.2025) [Derzhavna sluzhba statystyky Ukrainy, available at: https://ukrstat.gov.ua/ (date of application: 01.07.2025)]

3. Дулюк, І.В. & Матусов, Ю.П. (2010). Моделювання демографічних процесів на Україні за допомогою оптимальних процедур розпізнавання. Економічний вісник НТУУ «КПІ». 250‒255 [Duliuk, I.V. & Matusov, Yu.P. (2010). Modeliuvannia demohrafichnykh protsesiv na Ukraini za dopomohoiu optymalnykh protsedur rozpiznavannia. Ekonomichnyi visnyk NTUU «KPI». 250‒255]

4. Закон України «Про захист інтересів суб’єктів подання звітності та інших документів у період дії воєнного стану або стану війни». URL: https://zakon.rada.gov.ua/laws/show/2115-20#Text (дата звернення 07.07.2025) [Zakon Ukrainy "Pro zakhyst interesiv subiektiv podannia zvitnosti ta inshykh dokumentiv u period dii voiennoho stanu abo stanu viiny", available at: https://zakon.rada.gov.ua/laws/show/2115-20#Text (date of application: 07.07.2025)]

5. Караєв, Е.А., Жила, О.В. (2025). Математичне моделювання демографічних процесів в Україні за допомогою матриць Леслі. Радіоелектроніка та молодь у XXI столітті: матеріали 29-го Міжнар. молодіж. Форуму (Харків, 16–19 квітня 2025). Т. 8. 21–23. Харків : ХНУРЕ. [Karaiev, E.A., Zhyla, O.V. (2025). Matematychne modeliuvannia demohrafichnykh protsesiv v Ukraini za dopomohoiu matryts Lesli. Radioelektronika ta molod u XXI stolitti : materialy 29-ho Mizhnar. molodizh. Forumu (Kharkiv, 16–19 kvitnia 2025) (Vol. 8, 21–23). Kharkiv : KhNURE.]

6. Лібанова, Е.М. (2007). Людський розвиток регіонів України: аналіз та прогноз. Київ : Інститут демографії та соціальних досліджень НАН України [Libanova, E.M. L(2007). Liudskyi rozvytok rehioniv Ukrainy: analiz ta prohnoz. Kyiv : Instytut demohrafii ta sotsialnykh doslidzhen NAN Ukrainy]

7. Максимова, І.І., Литвиненко, Д.А. & Світлична, В.В. (2017). Прогнозування тенденцій демоекономічних процесів у сучасному бізнес-середовищі України. Економіка і суспільство. (13). 5–10 [Maksymova, I.I., Lytvynenko, D.A. & Svitlychna, V.V. (2017). Prohnozuvannia tendentsii demoekonomichnykh protsesiv u suchasnomu biznes-seredovyshchi Ukrainy. Ekonomika i suspilstvo. (13). 5–10]

8. Підгорний, А.З., Самотоєнкова, О.В., Ольвінська, Ю.О., Вітковська, К.В. (2016). Соціально-демографічна статистика: Підручник / За заг. ред. канд. екон. на ук, професора А.З. Підгорного. Одеса : ФОП Гуляєва В.М. [Pidhornyi, A.Z., Samotoienkova, O.V., Olvinska, Yu.O., Vitkovska, K.V. (2016). Sotsialno-demohrafichna statystyka: Pidruchnyk / Za zah. red. kand. ekon. na uk, profesora A.Z. Pidhornoho. Odesa : FOP Huliaieva V.M.]

9. Смертність в Україні утричі перевищує народжуваність у 2024 році. Опендатабот. URL: https://opendatabot.ua/analytics/birth-death-2024-6 (дата звернення 11.06.2025) [Smertnist v Ukraini utrychi perevyshchuie narodzhuvanist u 2024 rotsi. Opendatabot, available at: https://opendatabot.ua/analytics/birth-death-2024-6 (date of application: 07.07.2025)]

10. Стефановський, А.І. (2007). Адаптація модифікованої моделі Брасса для побудови повних таблиць смертності населення України. Демографія та соціальна економіка. 2. 38–55 [Stefanovskyi, A.I. (2007). Adaptatsiia modyfikovanoi modeli Brassa dlia pobudovy povnykh tablyts smertnosti naselennia Ukrainy. Demohrafiia ta sotsialna ekonomika. 2. 38–55]

11. Топчієв, О.Г. (2005). Суспільно-географічні дослідження: методологія, методи, методики: Навчальний посібник. Одеса: Астропринт [Topchiiev, O.H. (2005). Suspilno-heohrafichni doslidzhennia: metodolohiia, metody, metodyky: Navchalnyi posibnyk. Odesa: Astroprynt]

12. Угрин, Д., Ушенко, Ю.О., Яцько, О.М., Довгунь, А.Я., Добровольський, Ю.Г. (2024). Інтелектуальні системи прогнозування демографічних змін та їх вплив на маркетингові стратегії в ІТ-індустрії. Оптико-електронні інформаційно-енергетичні технології, 48 (2), 13–23 [Uhryn, D., Ushenko, Yu.O., Yatsko, O.M., Dovhun, A.Ia., Dobrovolskyi, Yu.H. (2024). Intelektualni systemy prohnozuvannia demohrafichnykh zmin ta yikh vplyv na marketynhovi stratehii v IT-industrii. Optyko-elektronni informatsiino-enerhetychni tekhnolohii, 48 (2), 13–23]

13. Шевчук П.Є. (2011). Застосування формальних методів до прогнозування смертності населення. Демографічні проблеми та тенденції. 73‒83 [Shevchuk P.Ie. (2011). Zastosuvannia formalnykh metodiv do prohnozuvannia smertnosti naselennia. Demohrafichni problemy ta tendentsii. 73‒83]

14. Яворська, В.В. (2013). Регіональні геодемографічні процеси в Україні: монографія. Кам’янець-Подільський: Аксіома [Yavorska, V.V. (2013). Rehionalni heodemohrafichni protsesy v Ukraini: Monohrafiia. Kamianets-Podilskyi: Aksioma]

15. Ghosn, W, Kassié, D., Jougla, E., Salem, G., Rey, G. & Rican, S. (2013). Trends in geographic mortality inequalities and their association with population changes in France, 1975–2006, European Journal of Public Health, 23 (5). 834–840 https://doi.org/10.1093/eurpub/cks078

16. Lee, R.D. & Carter, L.R. (1992). Modeling and Forecasting U.S. Mortality. Journal of American Statistical Association. 87(419). 659–671.

17. Lutz W. et al. (2003). Conditional Probabilistic Population Forecasting. Interim Report IR-03-052. Laxenburg.

18. Martinez-Beneito, M. A., Vergara-Hernández, C., Botella-Rocamora, P., Corpas-Burgos, F., Pérez-Panadés, J., Zurriaga, Ó., Aldasoro, E., Borrell, C., Cabeza, E., Cirera, L., Delfrade Osinaga, J., Fernández-Somoano, A., Gandarillas, A., Lorenzo Ruano, P. L., Marí-Dell’Olmo, M., Nolasco, A., Prieto-Salceda, M. D., Ramis, R., Rodríguez-Sanz, M., ... the MEDEA3 Project Group. (2021). Geographical Variability in Mortality in Urban Areas: A Joint Analysis of 16 Causes of Death. International Journal of Environmental Research and Public Health, 18(11), 5664. https://doi.org/10.3390/ijerph18115664

19. Ukolova, B., & Burcin, B. (2024). Analýza faktoru asociovaných s vícečetnými příčinami smrti v Česku v roce 2018 pomocí XGBoost regrese a metody SHAP. Demografie, 66(1), 24–38.

20. Ukolova, E.A. (2024). Comparative Analysis of Regional Mortality Differences Using Underlying and Multiple Causes of Death: A Case Study of Czechia. Spat Demogr 12, 8. https://doi.org/10.1007/s40980-024-00130-2

Downloads


Abstract views: 16

Published

2025-10-01