Venusian Volcanic Xenolandscapes

Authors

DOI:

https://doi.org/10.31861/geo.2024.849.114-121

Keywords:

xenolandscape, morphostructure, Venus, volcano, relief

Abstract

The study of Venusian xenolandscapes presents a significant scientific challenge due to their limited exploration and the specificity of available data. Research primarily focuses on impact ring structures and volcanic formations, which serve as key subjects for xenogeological and xenogeomorphological interpretations. Using radar imagery from interplanetary spacecraft, detailed relief models of Venus have been constructed, enabling the identification of numerous volcanic and tectonic features, their distribution, and characteristics. Venus exhibits prolonged volcanic activity, driven by its thermal potential. Approximately 80 % of the planet's surface is covered with extrusive volcanic materials, including lava plains – the largest in the Solar System. Notably, data from the Magellan mission revealed over 1 660 volcanic features of varying scales, ranging from small shield volcanoes to large coronae and lava channels. The primary types of volcanic plains – heavily deformed, moderately deformed, and undeformed – reflect successive stages of planetary evolution. The Venusian crust is predominantly basaltic and lacks water, which defines its unique geodynamic properties, including the absence of plate tectonics and the dominance of sub-lithospheric volcanic mechanisms. The concentration of volcanic structures in regions such as Beta, Atla, and Themis indicates ongoing activity, supported by localized thermal anomalies, radar data, and analyses of lava flows. Additionally, the stability of Venus’s global cloud layer, primarily composed of sulfuric acid droplets, further suggests persistent volcanism. Investigations into Venusian volcanic structures enhance our understanding of planetary evolution and geodynamic processes operating under high pressure and temperature conditions. Future missions and advancements in radiometric technologies promise new opportunities for monitoring contemporary volcanic activity and detailed surface mapping of Venus.

References

Кирилюк, С. (2023). Формування вулканічних структур (на прикладі вулканів Венери). Міжнародна науково-практична конференція «Географічна освіта і наука: виклики і поступ», присвячена 140-річчю географії у Львівському університеті (Львів, 18‒20 травня 2023 року), 104-108. [Kyryliuk, S. (2023). Formuvannia vulkanichnykh struktur (na prykladi vulkaniv Venery). Mizhnarodna naukovo-praktychna konferentsiia «Heohrafichna osvita i nauka: vyklyky i postup», prysviachena 140-richchiu heohrafii u Lvivskomu universyteti (Lviv, 18‒20 travnia 2023 roku), 104-108.]

Baker, V. R., Komatsu, G., Parker, T. J., Gulick, V. C., Kargel, J. C., & Lewis, J. S. (1992), Channels and valleys on Venus: Preliminary analysis of Magellan data. Journal of Geophysical Research, (97), 13.421-13.445. https://doi.org/10.1029/92JE00927

Banerdt, W. B., McGill, G. E., & Zuber, M. T. (1997). Plains tectonics on Venus. Іn Venus II – Geology, Geophysics, Atmosphere, and Solar Wind Environment (pp. 901-930). Tucson : Univ. of Ariz. Press, Tucson.

Barker, E. S. (1979). Detection of SO2 in the UV spectrum of Venus. Geophysical Research Letters, 6(2), 117-120. https://doi.org/10.1029/GL006i002p00117

Basilevsky, A. T., & Head, J. W. (2002). Venus: Timing and rates of geological activity. Geology, (30), 1015-1018. https://doi.org/10.1130/0091-7613(2002)030<1015:VTAROG>2.0.CO;2

Bondarenko, N. V., Head, J. W., & Ivanov, M. A. (2010). Present‐day volcanism on Venus: evidence from microwave radiometry. Geophysical Research Letters, 37(23). CiteID L23202. https://doi.org/10.1029/2010GL045233

Campbell, B. A. (1999). Surface formation rates and impact crater densities on Venus. Journal of Geophysical Research, (104), 21.951-21.955. https://doi.org/10.1029/1998JE000607

Campbell, D. B., Head, J. W., Harmon, J. K., & Hine, A. A. (1984). Venus: Volcanism and rift formation in Beta Regio. Science, 226(4671), 167-170. https://doi.org/10.1126/science.226.4671.167

Crumpler, L. S., Aubele, J. C., Senske, D. A., Keddie, S. T., Magee, K. P., & Head, J. W. (1997). Volcanoes and centers of volcanism on Venus, Venus II. Geology, Geophysics, Atmosphere, and Solar Wind Environment, 697-756.

Fegley Jr, B., & Prinn, R. G. (1989). Estimation of the rate of volcanism on Venus from reaction rate measurements. Nature, 337(6202), 55-58. https://doi.org/10.1038/337055a0

Guest, J. E., & Stofan, E. R. (1999). A new view of the stratigraphic history of Venus. Icarus, (139), 55-66. https://doi.org/10.1006/icar.1999.6091

Hamilton, V. E., & Stofan, E. R. (1996). The geomorphology and evolution of Hecate Chasma. Icarus, (121), 171-194. https://doi.org/10.1006/icar.1996.0077

Hansen, V. L. (2000). Geologic mapping of tectonic planets. Earth and Planetary Science Letters, (176), 527-542. https://doi.org/10.1016/S0012-821X(00)00017-0

Hauck, S. A., Phillips, R. J., & Price, M. H. (1998). Venus: Crater distribution and plains resurfacing models. Journal of Geophysical Research, (103), 13.635-13.642. https://doi.org/10.1029/98JE00400

Head, J. W., Crumpler, L. S., Aubele, J. C., Guest, J., & Saunders, S. R. (1992). Venus volcanism: classification of volcanic features and structures, associations, and global distribution from Magellan data. Journal of Geophysical Research, 97(E8), 13153-13197. https://doi.org/10.1029/92JE01273

Head, J. W., & Wilson, L. (1986). Volcanic processes and landforms on Venus: Theory, predictions, and observations. Journal of Geophysical Research: Solid Earth, 91(B9), 9407-9446. https://doi.org/10.1029/JB091iB09p09407

Herrick, R. R., Izenberg, N., & Phillips, R. J. (1995). Comment on «The global resurfacing of Venus» by R. G. Strom, G. G. Schaber, D. D. Dawson. Journal of Geophysical Research, (100), 23.355-23.359. https://doi.org/10.1029/95JE02293

Herrick, R. R., & Sharpton, V. L. (2000). Implications from stereo-derived topography of Venusian impact craters. Journal of Geophysical Research, (105), 20.245-20.262. https://doi.org/10.1029/1999JE001225

Herrick, R. R., Sharpton, V. L., Malin, M. C., Lyons, S. N., & Feely, K. (1997). Morphology and morphometry of impact craters. Іn Bouger, S. W. Et al. (Еd.), Venus II (pp. 1015-1046). Tucson : University of Arizona Press.

Ivanov, M. A., Crumpler, L. S., Aubele, J. C., & Head, J. W. (2015). Volcanism on Venus. The Encyclopedia of Volcanoes, 729-746.

Ivanov, M. A., & Head, J. W. (2013). The history of volcanism on Venus. Planetary and Space Science, (84), 66-92. https://doi.org/10.1016/j.pss.2013.04.018

McGovern, P. J., & Solomon, S. C. (1997). Filling of flexural moats around large volcanoes on Venus: Implications for volcanic stratigraphy and global magmatic flux. Journal of Geophysical Research, (102), 16.303-16.318. https://doi.org/10.1029/97JE01318

McKinnon, W. B., Zahnle, K. J., Ivanov, B. A., & Melosh, H. J. (1997). Cratering on Venus: Models and observations. Іn Bouger, S. W. Et al. (Еd.), Venus II. (pp. 969-1014). Tucson : University of Arizona Press.

Namiki, N., & Solomon, S. C. (1994). Impact crater densities on volcanoes and coronae on Venus: Implications for volcanic resurfacing. Science, (265), 929-933. https://doi.org/10.1126/science.265.5174.929

Nimmo, F., & McKenzie, D. (1998). Volcanism and tectonics on Venus. Annual Review of Earth and Planetary Sciences, 26(1), 23-51. https://doi.org/10.1146/annurev.earth.26.1.23

Pavri, B., Head, J. W., Klose, K. B., & Wilson, L. (1992). Steep‐sided domes on Venus: Characteristics, geologic setting, and eruption conditions from Magellan data. Journal of Geophysical Research: Planets, 97(E8), 13445-13478. https://doi.org/10.1029/92JE01162

Phillips, R. J., & Hansen, V. L. (1994). Tectonic and magmatic evolution of Venus. Annual Review Of Earth And Planetary Sciences, (22), 597-654.

Phillips, R. J., Raubertas, R. F., Arvidson, R. E., Sarkar, I. C., Herrick, R. R., Izenberg, N., & Grimm, R. E. (1992). Impact crater distribution and the resurfacing history of Venus. Journal of Geophysical Research, (97), 15.923-15.948. https://doi.org/10.1029/92JE01696

Price, M. H., & Suppe, J. (1994). Mean age of rifting and volcanism on Venus deduced from impact crater densities. Nature, (372), 756-759. https://doi.org/10.1038/372756a0

Price, M. H., Watson, G., & Brankman, C. (1996). Dating volcanism and rifting on Venus using impact crater densities. Journal of Geophysical Research, (101), 4657-4671. https://doi.org/10.1029/95JE03017

Schaber, G. G. (1982). Venus: Limited extension and volcanism along zones of lithospheric weakness. Geophysical Research Letters, (9), 499-502. https://doi.org/10.1029/GL009i005p00499

Schaber, G. G., Strom, R. G., Moore, H. J., Soderblom, L. A., Kirk, R. L., Chadwick, D. J., Dawson, D. D., Gaddis, L. R., Boyce, J. M., & Russell, J. (1992). Geology and distribution of impact craters on Venus: What are they telling us? Journal of Geophysical Research, 97(E8) 13.257-13.301. https://doi.org/10.1029/92JE01246

Sharpton, V. L. (1994). Evidence from Magellan for unexpected deep complex craters in Venus. In Dressler, B. O. et al. (Ed.), Large meteorite impacts and planetary evolution (pp. 19-27). Geological Society of America, Special Paper 293.

Solomon, S. C., & Head, J. W. (1982). Mechanisms for lithospheric heat transport on Venus: Implications for tectonic style and volcanism. Journal of Geophysical Research: Solid Earth, 87(B11), 9236-9246. https://doi.org/10.1029/JB087iB11p09236

Squyres, S. W., Janes, D. M., & Baer, G. (1992). The morphology and evolution of coronae on Venus. Journal of Geophysical Research, 97(E8), 13611-13634. https://doi.org/10.1029/92JE01213

Strom, R. G., Schaber, G. G., & Dawson, D. D. (1994). The global resurfacing of Venus. Journal of Geophysical Research, (99), 10.899-10.926. https://doi.org/10.1029/94JE00388

Wichman, R. W. (1999). Internal crater modifi cation on Venus: Recognizing crater-centered volcanism by changes in fl oor morphometry and fl oor brightness. Journal of Geophysical Research, (104), 21.957-21.977. https://doi.org/10.1029/1997JE000428

Downloads


Abstract views: 3

Published

2024-12-10