Dendroclimatic reconstructions in the Carpathians: retrospective and potential for environmental change studies
DOI:
https://doi.org/10.31861/geo.2025.854.222-231Keywords:
Carpathians,, dendroclimatic reconstructions,, air temperature,, atmospheric precipitation,, droughts,, climate change,, nature use,, anthropogenic influence.Abstract
The study synthesises and evaluates published dendroclimatic studies of the Carpathian region to determine the suitability and potential of such data for identifying climate change indicators.
A systematic bibliographic analysis of 2,561 publications in the Scopus database was conducted using the search query "(Carpath* AND Climat*), followed by the identification of a cluster of dendroclimatic studies (224 publications) through the construction of network conceptual maps. The interpretation of results is based on the analysis of radial annual tree ring growth using TRW (tree ring width), MXD (maximum density), BI (blue intensity), and isotopic analysis (δ¹³C, δ¹⁸O) parameters.
Uneven spatial coverage of studies was revealed in the Carpathians. The largest number of reconstructions was conducted in the Western Carpathians (10 studies), the smallest in the Southern Carpathians (1 study), while the South-Western Carpathians are not covered at all. The most common species in reconstructions is Swiss stone pine (Pinus cembra).
Dendroclimatic studies confirm that the Medieval Warm Period climate is analogous to modern warming, while the temperature decline during the Little Ice Age was smaller compared to global indicators. Wavelet analysis revealed changes in rhythmicity: from 1350 CE to 16–32-year cycles, and from 1850 CE to 64–128-year cycles. High drought frequency was established during the final phase of the Little Ice Age, especially in the 19th century.
Based on the synthesis of dendroclimatic data, it was established that the decline in air temperature during the Little Ice Age in the Carpathians was lower compared to average global indicators and those for the European territory as a whole. High drought frequency was detected in the final phase of this period, particularly in the 19th century in the Eastern Carpathians.
Dendroclimatic reconstructions of the Carpathians demonstrate good agreement with long-term summer air temperature patterns and the rhythmicity of atmospheric droughts. Methodological limitations of reconstructions depending on the elevation zone of sample collection were determined. Novel methods (isotopic analysis, MXD) demonstrate high potential for detecting climatic extremes.
Dendroclimatic data from the Carpathians are suitable for identifying both regional spatial patterns of climate variability and local extreme climatic events. Their consistency with long-term patterns of summer air temperatures and atmospheric drought rhythmicity has been confirmed, which determines the potential for use in calibrating modern climate models.
Tree-ring data are found to be a potential source for distinguishing the anthropogenic signal in environmental changes.
References
Холявчук, Д. І. (2025). Зміни клімату та їхнє відображення у ландшафтних регіонах Карпат впродовж останнього тисячоліття. (Дис. доктора. геогр. наук) Київський національний університет імені Тараса Шевченка. Київ. [Kholiavchuk, D. I. (2025). Zminy klimatu ta yikhnie vidobrazhennia u landshaftnykh rehionakh Karpat vprodovzh ostannoho tysiacholittia. (Dys. doktora. heohr. nauk) Kyivskyi natsionalnyi universytet imeni Tarasa Shevchenka. Kyiv.]
2. Büntgen, U., & Tegel, W. (2011). European tree-ring data and the Medieval Climate Anomaly. PAGES News, 19(1). https://doi.org/10.22498/pages.19.1.14.
3. Büntgen, U., Frank, D. C., Kaczka, R. J., Verstege, A., Zwijacz-Kozica, T., & Esper, J. (2007). Growth responses to climate in a multi-species tree-ring network in the Western Carpathian Tatra Mountains, Poland and Slovakia. Tree Physiology, 27(5), 689–702. https://doi.org/10.1093/treephys/27.5.689.
4. Büntgen, U., Franke, J., Frank, D., Wilson, R., González-Rouco, F., & Esper, J. (2010). Assessing the spatial signature of European climate reconstructions. Climate Research, 41(2). https://doi.org/10.3354/cr00848.
5. Büntgen, U., Kyncl, T., Ginzler, C., Jacks, D. S., Esper, J., Tegel, W., Heussner, K. U., & Kyncl, J. (2013). Filling the Eastern European gap in millennium-long temperature reconstructions. Proceedings of the National Academy of Sciences of the United States of America, 110(5). https://doi.org/10.1073/pnas.1211485110.
6. Büntgen, U., Trnka, M., Krusic, P. J., Kyncl, T., Kyncl, J., Luterbacher, J., Zorita, E., Ljungqvist, F. C., Auer, I., Konter, O., Schneider, L., Tegel, W., Štěpánek, P., Brönnimann, S., Hellmann, L., Nievergelt, D., & Esper, J. (2015). Tree-ring amplification of the early nineteenth-century summer cooling in central Europe. Journal of Climate, 28(13), 5272–5288. https://doi.org/10.1175/JCLI-D-14-00673.1.
IPCC (2021). IPCC AR6 WG1 The Physical Science Basis. In Climate Change 2021: The Physical Science Basis.
7. Jiang, Y., Begović, K., Nogueira, J., Schurman, J. S., Svoboda, M., & Rydval, M. (2022). Impact of disturbance signatures on tree-ring width and blue intensity chronology structure and climatic signals in Carpathian Norway spruce. Agricultural and Forest Meteorology, 327. https://doi.org/10.1016/j.agrformet.2022.109236.
8. Kern, Z., Nagavciuc, V., Hatvani, I. G., Hegyi, I. N., Loader, N. J., & Popa, I. (2023). Evaluation of the non-climatic (age-related) trends of stable oxygen and carbon isotopes in Swiss stone pine (Pinus cembra L.) tree rings from the Eastern Carpathians, Romania. Dendrochronologia, 78. https://doi.org/10.1016/j.dendro.2023.126061.
9. Kern, Z., Németh, A., Horoszné Gulyás, M., Popa, I., Levanič, T., & Hatvani, I. G. (2016). Natural proxy records of temperature- and hydroclimate variability with annual resolution from the Northern Balkan–Carpathian region for the past millennium – Review & recalibration. Quaternary International, 415, 109–125. https://doi.org/10.1016/j.quaint.2016.01.012.
10. Kern, Z., Patkó, M., Kázmér, M., Fekete, J., Kele, S., & Pályi, Z. (2013). Multiple tree-ring proxies (earlywood width, latewood width and δ13C) from pedunculate oak (Quercus robur L.), Hungary. Quaternary International, 293, 257–267. https://doi.org/10.1016/j.quaint.2012.05.037.
11. Kholiavchuk, D., Gurgiser, W., & Mayr, S. (2024). Carpathian Forests: Past and Recent Developments. Forests, 15(1). https://doi.org/10.3390/f15010065.
12. Levanič, T., Popa, I., Poljanšek, S., & Nechita, C. (2013). A 323-year long reconstruction of drought for SW Romania based on black pine (Pinus Nigra) tree-ring widths. International Journal of Biometeorology, 57(5). https://doi.org/10.1007/s00484-012-0596-9
13. Longman, J., Veres, D., Ersek, V., Haliuc, A., & Wennrich, V. (2019). Runoff events and related rainfall variability in the Southern Carpathians during the last 2000 years. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-41855-1.
15. Nagavciuc, V., Helle, G., Rădoane, M., Roibu, C.-C., Cotos, M.-G., & Ionita, M. (2024). A long-term drought reconstruction based on oxygen isotope tree ring data. EGUsphere, 2024, 1–22. https://doi.org/10.5194/egusphere-2024-2144.
16. Nagavciuc, V., Ionita, M., Perșoiu, A., Popa, I., Loader, N. J., & McCarroll, D. (2019). Stable oxygen isotopes in Romanian oak tree rings record summer droughts and associated large-scale circulation patterns over Europe. Climate Dynamics, 52(11), 6557–6568. https://doi.org/10.1007/s00382-018-4530-7
17. Nagavciuc, V., Kern, Z., Ionita, M., Hartl, C., Konter, O., Esper, J., & Popa, I. (2020). Climate signals in carbon and oxygen isotope ratios of Pinus cembra tree-ring cellulose from the Călimani Mountains, Romania. International Journal of Climatology, 40(5), 2539–2556. https://doi.org/10.1002/joc.6349
18. Nagavciuc, V., Mursa, A., Ionita, M., Sfeclă, V., Popa, I., & Roibu, C.-C. (2023). An Overview of Extreme Years in Quercus sp. Tree Ring Records from the Northern Moldavian Plateau. Forests, 14(5). https://doi.org/10.3390/f14050894.
19. Nagavciuc, V., Mursa, A., Ionita, M., Sfeclă, V., Popa, I., & Roibu, C.-C. (2023). An Overview of Extreme Years in Quercus sp. Tree Ring Records from the Northern Moldavian Plateau. Forests, 14(5). https://doi.org/10.3390/f14050894
20. Nechita, C., Popa, I., & Eggertsson, Ó. (2017). Climate response of oak (Quercus spp.), an evidence of a bioclimatic boundary induced by the Carpathians. Science of the Total Environment, 599–600, 1598–1607. https://doi.org/10.1016/j.scitotenv.2017.05.118
21. Niedźwiedź, T. (2010). Summer temperatures in the Tatra Mountains during the Maunder Minimum (1645-1715). In The Polish Climate in the European Context: An Historical Overview. https://doi.org/10.1007/978-90-481-3167-9_19
22. Onac, B. P., Forray, F. L., Wynn, J. G., & Giurgiu, A. M. (2014). Guano-derived δ13C-based paleo-hydroclimate record from Gaura cu Musca Cave, SW Romania. Environmental Earth Sciences, 71(9). https://doi.org/10.1007/s12665-013-2789-x
23. Popa, I., & Bouriaud, O. (2014). Reconstruction of summer temperatures in Eastern Carpathian Mountains (Rodna Mts, Romania) back to AD 1460 from tree-rings. International Journal of Climatology, 34(3), 871–880. https://doi.org/10.1002/joc.3730
24. Popa, I., & Cheval, S. (2007). Early Winter Temperature Reconstruction of Sinaia Area (Romania ) Derived From Tree-Rings of Silver Fir (Abies Alba Mill.). Romanian Journal of Meteorology, 9(1).
25. Popa, I., & Kern, Z. (2009). Long-term summer temperature reconstruction inferred from tree-ring records from the Eastern Carpathians. Climate Dynamics, 32(7–8), 1107–1117. https://doi.org/10.1007/s00382-008-0439-x
26. Roibu, C. C., Nagavciuc, V., Ionita, M., Popa, I., Horodnic, S. A., Mursa, A., & Büntgen, U. (2022). A tree ring-based hydroclimate reconstruction for Eastern Europe reveals large-scale teleconnection patterns. Climate Dynamics, 59(9–10). https://doi.org/10.1007/s00382-022-06255-8
27. Sochová, I., Kolář, T., Árvai, M., Bošeľa, M., Čufar, K., Kern, Z., Kyncl, J., Marčiš, P., Mészáros, I., Morgós, A., Mursa, A., Popa, A., Roibu, C.-C., Sopushynskyy, I., & Rybníček, M. (2024). The palaeoclimatic potential of recent oak tree-ring width chronologies from Southwest Ukraine. Dendrochronologia, 84, 126168. https://doi.org/https://doi.org/10.1016/j.dendro.2024.126168
28. Sochová, I., Kolář, T., Brázdil, R., Kyncl, T., Kyncl, J., Melo, M., Trnka, M., Bilanych, M., & Rybníček, M. (2025). A new 621-year Transcarpathian oak tree-ring chronology (Eastern Europe). Dendrochronologia, 89, 126284. https://doi.org/https://doi.org/10.1016/j.dendro.2024.126284