The practical aspects of remote land sensing study of the causes of water penetration on ground hydraulic structures
Keywords:
geoecology, constructive geography, geosystems, river-basin systems, river-valley landscapes, river natural and technical systems, landscape technical systems, landscape engineering systems, GIS technologies, Dniester PSPP, remote sensing, thermo map, GNSSAbstract
This article is devoted to the application of remote sensing in the context of the natural and technical geosystem of the Dniester PSPP. The main emphasis is placed on the use of geographic information systems (GIS) and thermographic data to determine the factors that may cause abnormal thermal load on hydraulic structures. The study is aimed at identifying and analysing temperature gradients that may influence the occurrence of thermal anomalies. The study is aimed at identifying potential causes, mechanisms and factors affecting water manifestations. The subject of the analysis is also the relationship between the temperature gradient on the surface of structures and the presence of water leakage, as well as the impact of temperature on geological, hydrological and engineering systems of the structure. The analysis process is based on the interpretation of thermographic data reflecting the local heating of the surface of the hydraulic structure and the geotechnical characteristics of the soils, taking into account the design features of the hydraulic structure The research provides valuable insights that can be used to optimise the design and construction of earthen dams. Analysis of thermal processes is an important step in understanding and predicting their impact on the geological structure and hydrogeological properties of the environment. Man-made soils placed in the protective layers of a dam are subject to significant uneven heating.
References
Зацерковний, В. І., Оберемок, Н. В., & Березіна, П. О. (2018). Просторово-часовий аналіз «островів тепла» мегаполіса за супутниковими знімками Landsat. Наукоємні технології, 1(37), 106-113. [Zatserkovnyi, V. I., Oberemok, N. V., & Berezina, P. O. (2018). Prostorovo-chasovyi analiz «ostroviv tepla» mehapolisa za suputnykovymy znimkamy Landsat. Naukoiemni tekhnolohii, 1(37), 106-113.] https://doi.org/10.18372/2310-5461.37.12377
Achard, V., & Lenot, X. (2009, August). Atmospheric and topographic corrections for hyperspectral imagery. In 2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (pp. 1-4). IEEE. https://doi.org/10.1109/whispers.2009.5289098
Bala, R., Prasad, R., & Yadav, V. P. (2020). Thermal sharpening of MODIS land surface temperature using statistical downscaling technique in urban areas. Theoretical and Applied Climatology, 141(3-4), 935-946. https://doi.org/10.1007/s00704-020-03253-w
Barsi, J. A., Barker, J. L., & Schott, J. R. (2003). An atmospheric correction parameter calculator for a single thermal band earth-sensing instrument. In IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No. 03CH37477) (Vol. 5, pp. 3014-3016). IEEE. https://doi.org/10.1109/igarss.2003.1294665
Bhargava, A. (2018). Effects of albedo in urban planning – special reference to building roofs. Examines in Marine Biology & Oceanography, 1(2), 6-7. https://doi.org/10.31031/eimbo.2018.01.000506
Grigoraș, G., & Urițescu, B. (2018). Spatial hotspot analysis of bucharest’s urban heat island (UHI) using modis data. Annals of Valahia University of Targoviste, Geographical Series, 18(1), 14-22. https://doi.org/10.2478/avutgs-2018-0002
Günal, E., Wang, X., Kılıc, O. M., Budak, M., Al Obaid, S., Ansari, M. J., & Brestic, M. (2021). Potential of Landsat 8 OLI for mapping and monitoring of soil salinity in an arid region: A case study in Dushak, Turkmenistan. Plos one, 16(11), e0259695. https://doi.org/10.1371/journal.pone.0259695
Lo, C. P., Quattrochi, D. A., & Luvall, J. C. (1997). Application of high-resolution thermal infrared remote sensing and GIS to assess the urban heat island effect. International Journal of Remote Sensing, 18(2), 287-304. https://doi.org/10.1080/014311697219079
Mzid, N., Castaldi, F., Tolomio, M., Pascucci, S., Casa, R., & Pignatti, S. (2022). Evaluation of agricultural bare soil properties retrieval from landsat 8, sentinel-2 and PRISMA satellite data. Remote Sensing, 14(3), 714. https://doi.org/10.3390/rs14030714
Ngo Thi, D., Ha, N. T. T., Tran Dang, Q., Koike, K., & Mai Trong, N. (2019). Effective band ratio of landsat 8 images based on VNIR-SWIR reflectance spectra of topsoils for soil moisture mapping in a tropical region. Remote Sensing, 11(6), 716. https://doi.org/10.3390/rs11060716
Padró, J.-C., Muñoz, F.-J., Ávila, L., Pesquer, L., & Pons, X. (2018). Radiometric correction of landsat-8 and sentinel-2a scenes using drone imagery in synergy with field spectroradiometry. Remote Sensing, 10(11), 1687. https://doi.org/10.3390/rs10111687
Tsou, J., Zhuang, J., Li, Y., & Zhang, Y. (2017). Urban heat island assessment using the landsat 8 data: A case study in shenzhen and hong kong. Urban Science, 1(1), 10. https://doi.org/10.3390/urbansci1010010
Wang, W., Liu, K., Tang, R., & Wang, S. (2019). Remote sensing image-based analysis of the urban heat island effect in Shenzhen, China. Physics and Chemistry of the Earth, Parts a/B/C, (110), 168-175. https://doi.org/10.1016/j.pce.2019.01.002
Wulder, M. A., Ortlepp, S. M., White, J. C., & Maxwell, S. (2008). Evaluation of Landsat-7 SLC-off image products for forest change detection. Canadian Journal of Remote Sensing, 34(2), 93-99. https://doi.org/10.5589/m08-020
Zhou, D., Xiao, J., Bonafoni, S., Berger, C., Deilami, K., Zhou, Y., Frolking, S., Yao, R., Qiao, Z., & Sobrino, J. (2018). Satellite remote sensing of surface urban heat islands: Progress, challenges, and perspectives. Remote Sensing, 11(1), 48. https://doi.org/10.3390/rs11010048
Zyhar, A., Zayats, I., & Zakrevskyi, O. (2023). GIS-Oriented Approach to Analyzing the Causes of Water Displays on Hydraulic Structures. In International Conference of Young Professionals «GeoTerrace-2023» (Vol. 2023, No. 1, pp. 1-5). European Association of Geoscientists & Engineers. https://doi.org/10.3997/2214-4609.2023510037
Atmospheric correction parameter calculator (2024).
EarthExplorer (USGS) (2024).
Landsat 8 | landsat science (2024). Landsat Science | A joint NASA/USGS Earth observation program.
Novodnistrovsk, Chernivtsi, Ukraine Weather Radar (2024). AccuWeather.
Ukrhydroenergo. Ukrhydroenergo is the largest hydropower-generating company in Ukraine (2024).
Published
Issue
Section
License
Copyright (c) 2024 Scientific Herald of Chernivtsi University : Geography

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.