ВИКОРИСТАННЯ ISSR-МАРКЕРІВ В ОЦІНЦІ ГЕНЕТИЧНОГО РІЗНОМАНІТТЯ УКРАЇНСЬКИХ ПРЕДСТАВНИКІВ РОДУ HERACLEUM
DOI:
https://doi.org/10.31861/biosystems2024.03.266Ключові слова:
біологічне різноманіття, генетичний поліморфізм, молекулярні маркери, міжвидова гібридизація, Heracleum, ApiaceaeАнотація
Рід Heracleum (борщівник) належить до родини Apiaceae (Зонтичні або Окружкові). Види цього роду було інтродуковано на території багатьох регіонів світу в якості декоративних або кормових рослин. Вторинні ареали інвазійних борщівників часто перекриваються із ареалами аборигенних видів роду. Сьогодні в Європі виокремлюють три основні інвазійні види роду Heracleum: H. mantegazzianum Sommier & Levier, H. persicum Desf. ex Fisch. та H. sosnowskyi Manden. Особливістю цих видів є те, що вони демонструють подібність як на морфо-анатомічному, так і на молекулярно-генетичному рівнях. Ідентифікацію та розмежування видів в межах роду додатково ускладнює явище міжвидової гібридизації, яке суттєво розмиває межі між ними. Ці таксономічні проблеми можуть бути успішно вирішені із застосовуванням молекулярних маркерів.
У цій роботі ми вперше наводимо результати використання ISSR-маркерів для представників роду Heracleum з різних регіонів для аналізу генетичного поліморфізму та оцінки гібридизації між інвазійними й аборигенними видами в Україні. Зразки рослин були зібрані у різних областях України, а також у Румунії. На загал було виявлено чотири генетичні кластери: два для інвазійних видів (H. mantegazzianum, H. sosnowskyi) та два для аборигенних (H. sphondylium, H. carpaticum). Генетичний аналіз показав, що морфологічні критерії часто не дозволяють однозначно ідентифікувати ці види.
Дані ISSR-аналізу підтверджують можливість міжвидової гібридизації у роді Heracleum. Генетична структура зразків продемонструвала значну подібність між двома інвазійними видами, що утворюють так званий "комплекс гігантських борщівників" – H. mantegazzianum та H. sosnowskyi. Водночас аборигенні види H. carpaticum Porcius і H. sphondylium L. виявилися генетично відмінними, незважаючи на їх морфологічну подібність. Отримані результати підтверджують важливість використання молекулярних маркерів для визначення генетичної структури, оцінки видового статусу та дослідження гібридизації у складних таксономічних групах.
Посилання
1. Abd-Dada, H., Bouda, S., Khachtib, Y., Bella, Y. A., & Haddioui, A. (2023). Use of ISSR markers to assess the genetic diversity of an endemic plant of Morocco (Euphorbia resinifera O. Berg). Journal of Genetic Engineering and Biotechnology, 21(1), 91. https://doi.org/10.1186/s43141-023-00543-4
2. Amruthakumar, S., Manivel, B., Sivamani, K., Sethuraman, T., Rao, N. S. P., & Ganesh, D. (2024). Molecular identity for commercially important inter-specific hybrids of Coffea using ISSR-DNA marker: implication on genetic improvement. Plant Biotechnology Reports, 18(3), 425-436. https://doi.org/10.1007/s11816-023-00878-x
3. de Souza, T. B., Gaeta, M. L., Martins, C., & Vanzela, A. L. L. (2020). IGS sequences in Cestrum present AT-and GC-rich conserved domains, with strong regulatory potential for 5S rDNA. Molecular Biology Reports, 47, 55-66. https://doi.org/10.1007/s11033-019-05104-y
4. Earl, D. A., & VonHoldt, B. M. (2012). STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation genetics resources, 4, 359-361.. https://doi.org/10.1007/s12686-011-9548-7
5. Gabriell, T. S., Amalia, A., Rifka, R., & Suwastika, I. N. (2024). Phylogenic analysis based on intergenic spacer of rpl32-ccsA segment in chloroplasts genome of cacao (Theobroma cacao L.). In AIP Conference Proceedings (Vol. 3132, No. 1). AIP Publishing. https://doi.org/10.1063/5.0211434
6. Gruľová, D., Baranová, B., Eliašová, A., Brun, C., Fejér, J., Kron, I., & Sedlák, V. (2024). Does the invasive Heracleum mantegazzianum influence other species by allelopathy? Plants, 13(10), 1333. https://doi.org/10.3390/plants13101333
7. Hasan, N., Choudhary, S., Naaz, N., Sharma, N., & Laskar, R. A. (2021). Recent advancements in molecular marker-assisted selection and applications in plant breeding programmes. Journal of Genetic Engineering and Biotechnology, 19(1), 128. https://doi.org/10.1186/s43141-021-00231-1
8. Ishchenko, O. O., Mel’nyk, V. M., Parnikoza, І. Y., Budzhak, V. V., Panchuk, І. І., Kunakh, V. A., & Volkov, R. A. (2020). Molecular organization of 5S ribosomal DNA and taxonomic status of Avenella flexuosa (L.) Drejer (Poaceae). Cytology and Genetics, 54, 505-513. https://doi.org/10.3103/S0095452720060055
9. Ivanovych, Y. I., Udovychenko, K. M., Bublyk, M. O., & Volkov, R. A. (2017). ISSR-PCR fingerprinting of Ukrainian sweet cherry (Prunus avium L.) cultivars. Cytology and Genetics, 51, 40-47.. https://doi.org/10.3103/s0095452717010066
10. Jahodová, Š., Trybush, S., Pyšek, P., Wade, M., & Karp, A. (2007). Invasive species of Heracleum in Europe: an insight into genetic relationships and invasion history. Diversity and Distributions, 13(1), 99-114.
11. Kamali, M., Samsampour, D., Bagheri, A., Mehrafarin, A., & Homaei, A. (2023). Association analysis and evaluation of genetic diversity of Teucrium stocksianum Boiss. populations using ISSR markers. Genetic Resources and Crop Evolution, 70(3), 691-709. https://doi.org/10.1007/s10722-022-01529-w
12. Li, J. W., Li, H., Liu, Z. W., Wang, Y. X., Chen, Y., Yang, N., ... & Zhuang, J. (2023). Molecular markers in tea plant (Camellia sinensis): Applications to evolution, genetic identification, and molecular breeding. Plant Physiology and Biochemistry, 198, 107704. https://doi.org/10.1016/j.plaphy.2023.107704
13. Nei M, Li W (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76(10): 5269-5273. https://doi.org/10.1073/pnas.76.10.5269
14. Ochsmann, J. (1996). Heracleum mantegazzianum Sommier & Levier (Apiaceae) in Deutschland Untersuchungen zur Biologie, Verbreitung, Morphologie und Taxonomie. Feddes Repertorium, 107(7), 557-595. https://doi.org/10.1002/fedr.19961070701
15. Panchuk, I. I., & Volkov, R. A. (2007). A practical course in molecular genetics. [Praktykum z molekuliarnoi henetyky] Chernivtsi: Ruta. 120 p. [In Ukrainian]
16. Pergl, J., & Perglová, I. (2006). Heracleum mantegazzianum. Delivering alien invasieve species inventories for Europe. DAISIE.
17. Perrier, X, Flori, A, Bonnot, F (2003) Data analysis methods in genetic diversity of cultivated tropical plants (pp. 43-76). Enfield: Science Publishers.
18. Porebski, S., Bailey, L. G., & Baum, B. R. (1997). Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant molecular biology reporter, 15, 8-15. https://doi.org/10.1007/BF02772108
19. Pritchard, J. K, Stephens, M, Donnelly, P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2): 945-959. https://doi.org/10.1093/genetics/155.2.945
20. Rodríguez-González, R., Gutiérrez, M. L., Fuentes, I., Gálvez-Prada, F., Sochorová, J., Kovařík, A., & Garcia, S. (2023). Release 4.0 of the plant rDNA database: A database on plant ribosomal DNA loci number, their position, and organization: An information source for comparative cytogenetics. In Plant Genomic and Cytogenetic Databases (pp. 237-245). New York, NY: Springer US.
21. Roshka, N, Derevenko, T. & Chorney, I. (2024). Use of the rpl32-trnl region of the chloroplast genome in the molecular taxonomy of Heracleum species. [Vykorystannya dilyanky rpl32-trnl khloroplastnoho henomu u molekulyarniy taksonomiyi vydiv rodu Heracleum] Scientific Herald of Chernivtsi University. Biology (Biological Systems), 16(1), 58-64. [In Ukrainian] https://doi.org/10.31861/biosystems2024.01.058
22. Rusak, O. O., Petrashchuk, V. I., Panchuk, I. I., & Volkov, R. A. (2016). Molecular organization of 5S rDNA in two Ukrainian populations of Sycamore (Acer pseudoplatanus). Bull. Vavilov Soc. Genet. Breed. Ukr, 14(2), 216-220.
23. Savadi, S., Sowmya, K., Megha, V. S., Muralidhara, B. M., & Mohana, G. S. (2021). Genetic diversity and identification of interspecific hybrids of Anacardium species using microsatellites. Brazilian Journal of Botany, 44, 139-148. https://doi.org/10.1007/s40415-020-00678-5
24. Song, L., Wang, R., Yang, X., Zhang, A., & Liu, D. (2023). Molecular markers and their applications in marker-assisted selection (MAS) in bread wheat (Triticum aestivum L.). Agriculture, 13(3), 642. https://doi.org/10.3390/agriculture13030642
25. Tutin, T.G., & Davis, A. (1980). Umbellifers of the British Isles. London, UK: Botanical Society of the British Isles.
26. Tynkevich, Y. O., Shelyfist, A. Y., Kozub, L. V., Hemleben, V., Panchuk, I. I., & Volkov, R. A. (2022). 5S ribosomal DNA of genus Solanum: molecular organization, evolution, and taxonomy. Frontiers in Plant Science, 13, 852406.. https://doi.org/10.3389/fpls.2022.852406
27. Tynkevich, Y. O., Ivanovych, Y. I., Roshka, N. M., Tokaryuk, A. I., Blyzniuk, K. G., Shelyfist, A. Y., & Volkov, R. A. (2025). Genetic diversity of Ukrainian populations of invasive species of the genus Galinsoga assessed by ISSR-markers. Cytol Genet, 59(1). In press.
28. Weimarck, G., Stewart, F., & Grace, J. (1979). Morphometric and chromatographic variation and male meiosis in the hybrid Heracleum mantegazzianum x H. sphondylium (Apiaceae) and its parents. Hereditas, 91(1), 117-127. https://doi.org/10.1111/j.1601-5223.1979.tb01651.x
29. Xiong, C., Huang, Y., Li, Z., Wu, L., Liu, Z., Zhu, W., ... & Hong, X. (2023). Comparative chloroplast genomics reveals the phylogeny and the adaptive evolution of Begonia in China. BMC genomics, 24(1), 648. https://doi.org/10.1186/s12864-023-09563-3
30. Yu, Y., Downie, S. R., He, X., Deng, X., & Yan, L. (2011). Phylogeny and biogeography of Chinese Heracleum (Apiaceae tribe Tordylieae) with comments on their fruit morphology. Plant Systematics and Evolution, 296, 179-203. https://doi.org/10.1007/s00606-011-0486-3.