RESULTS OF HONEY BEE COLONY LOSSES MONITORING IN UKRAINE IN THE CONDITIONS OF WAR AFTER THE WINTER OF 2022-2023

Authors

  • M.M. FEDORIAK Yuriy Fedkovych Chernivtsi National University Author
  • О.О. SHKROBANETS Yuriy Fedkovych Chernivtsi National University Author
  • L.I. TYMOCHKO Yuriy Fedkovych Chernivtsi National University Author
  • T.V. FYLYPCHUK Yuriy Fedkovych Chernivtsi National University Author
  • A.V. ZHUK Yuriy Fedkovych Chernivtsi National University Author
  • O.F. DELI Odesa National University named after I. I. Mechnikov Author
  • S.S. PODOBIVSKIY Ternopil State Medical University named after I. Ya. Gorbachevskii, Ministry of Health of Ukraine Author
  • V.G. MIKOLAYCHUK Mykolaiv National Agrarian University Author
  • U.V. LEHETA Yuriy Fedkovych Chernivtsi National University Author
  • O.D. ZAROCHENTSEVA Yuriy Fedkovych Chernivtsi National University Author
  • N.I. HAVRYLETS Transnistrian research station of horticulture of the Institute of Horticulture of the National Academy of Sciences of Ukraine Author
  • G.M. MELNYCHENKO Prykarpattia National University named after Vasyl Stefanyk, Faculty of Natural Sciences Author
  • V.V. JOS Yuriy Fedkovych Chernivtsi National University Author

DOI:

https://doi.org/10.31861/biosystems2024.01.084

Keywords:

Apis mellifera, honey bee, colony losses, monitoring, mortality, beekeeping, varroosis

Abstract

Losses of Western honey bee colonies (Apis mellifera L.) represent a globally significant phenomenon with profound ecological and economic implications, yet the underlying causes remain a subject of ongoing investigation (Insolia et al., 2022). This study aimed to evaluate colony losses following the 2022–2023 wintering season in Ukraine in the conditions of the ongoing war, as part of the annual international monitoring effort coordinated by the COLOSS. The survey was conducted employing the standardized COLOSS protocol and covered all physiographic zones of Ukraine except for the Crimean Mountains, with data from 751 valid protocols synthesized for analysis.

The average overall loss rate after the 2022-2023 wintering season in Ukraine was 10.8 %, slightly exceeding the previous year's rate (8.9% after the 2021-2022 wintering season). Notably, the loss of bee colonies (6.55 %) nearly doubled compared to the previous year (3.72% after the 2021-2022 wintering season), while losses due to unsolvable queen problems (3.07 %) remained consistent with the previous year (3.07% after the 2021-2022 wintering season), and losses attributable to adverse natural phenomena (1.27%) decreased by over 1.5 times (2.08% after the 2021-2022 wintering season). The highest overall loss rate of bee colonies was observed in the steppe zone (17.0%), with significantly lower losses in the Ukrainian Carpathians (7.3%), mixed (8.6%), and broad-leaved (9.0%) forest zones. The distribution of loss components across different physiographic zones mirrored the national trend: dead/missing colonies (4.19 % - 10.13 %), unresolved queen issues (2.16 % - 5.24 %), losses due to adverse natural events (0.74 % - 1.85 %). Among the reported characteristics of lost colonies, starvation-induced mortality (19 %) and unexplained bee deaths (17.8 %) were most frequently cited, while bee disappearances (9.1%) and dead bees within hives despite available food (10.4 %) were less common.

Over 12% of analysed beekeeping operations were situated in areas affected by armed conflict, with some experiencing direct damage to apiaries (2.4%) and associated equipment (0.1% - 0.5%). Once again, the inverse relationship between apiary size and total losses was reaffirmed, though no correlations between colony losses and migratory beekeeping were identified.

76.4 % of respondents monitored their colonies for Varroa mite infestations, with 97.5% treating for varroosis. Notably, 19.6% of respondents treated their colonies without prior monitoring of mite infestation levels. Amitraz-based veterinary products remained the most commonly used acaricides in Ukraine, applied through fumigation or aerosols (32.2 %) and strips (21.7 %). Additionally, 22.9 % of surveyed beekeepers practiced drone brood removal. The applying of traditional beekeeping methods increased (10,4% this year, compared to 2.18 % and 3.60 % before the wintering seasons of 2020-2021 and 2019-2020, respectively).

References

National Atlas of Ukraine (2007). Kyiv: DNVP "Cartography". 440 p. (In Ukrainian)

Economic truth. Reproduced from:https://www.epravda.com.ua/publications/2022/09/1/690633/ (In Ukrainian)

Fedoriak M., Tymochko L., Shkrobanets O., Zhuk A., Mikolaychuk V., Deli O., Podobivskiy S., Kalynychenko O., Melnychenko G., Zarochentseva O., Burkut V., Sosnovskyi K.. (2022). Honey bee colony losses in Ukraine: results after the winter of 2020–2021. Biological systems. Vol. 14. Is. 1. 45 – 55. https://doi.org/10.31861/biosystems2022.01.045 (In Ukrainian)

FedoriakM. M., TymochkoL. I., ShkrobanetsO. O., ZhukA. V., Deli O. F., Podobivskiy S. S., Mikolaychuk V. G., Kalynychenko O. O., Leheta U. V., Zarochentseva O. D. (2021). Results of Annual Monitoring of Honey Bee Colony Winter Losses in Ukraine: Winter 2019–2020. Bulletin of V. N. Karazin Kharkiv National University, series "Ecology", 25. Р. 111–124. DOI: https://doi.org/10.26565/1992-4259-2021-25-10 (In Ukrainian)

Brodschneider, R. & Gray, A. (2021). How COLOSS Monitoring and Researchon Lost Honey Bee Colonies Can Support Colony Survival. Bee World, 99(1), 8 – 10. https://doi.org/10.1080/0005772X.2021.1993611

Brodschneider, R., Gray, A., vanderZee, R., Adjlane, N., Brusbardis, V., Charriüre, J.-D., Chlebo, R., Coffey, M. F., Crailsheim, K., Dahle, B., Danihlнk, J., Danneels, E., deGraaf, D. C., Dražicґ, M. M., Fedoriak, M., Forsythe, I., Golubovski, M., Gregorc, A., Grz˛eda, U., … Woehl, S. (2016). Preliminary analysis of loss rates of honey bee colonies during winter 2015/16 from the COLOSS survey. Journal of Apicultural Research, 55(5), 375–378. https://doi.org/10.1080/00218839.2016.1260240

Brodschneider, R., Gray, A., Adjlane, N., Ballis, A., Brusbardis, V., Charriиre, J.-D., Chlebo, R., Coffey, M. F., Dahle, B., de Graaf, D. C., Dražicґ, M. M., Evans, G., Fedoriak, M., Forsythe, I., Gregorc, A., Grze˛da, U., Hetzroni, A., Kauko, L., Kristiansen, P., … Danihlнk, J. (2018). Multi-country loss rates of honey bee colonies during winter 2016/2017 from the COLOSS survey. Journal of Apicultural Research, 57(3), 452–457.https://doi.org/10.1080/00218839.2018.1460911

Büchler, R., Berg, S., Le Conte, Y. (2010). Breeding for resistance to Varroa destructor in Europe. Apidologie, 41, 393-408. https://doi.org/10.1051/apido/2010011

Dainat, B., Engelsdorp, D.V., Neumann, P. (2012). Colony collapse disorder in Europe. Environ. Microbiol. Reports,4, 123–125. https://doi.org /10.1111/j.1758-2229.2011.00312.x

Dalmon, A., Peruzzi, M,. Le Conte, Y., Alaux, C., Pioz, M. (2019). Temperature-driven changes in viral loads in the honey bee Apis mellifera. Journal of Invertebrate Pathology, 160, 87–94. https://doi.org/10.1016/j.jip.2018.12.005

de Miranda, J. R. & Genersch, E. (2010). Deformed wing virus. J. Invertebr. Pathol., 103, 48-61. https://doi.org/10.1016/j.jip.2009.06.012

Desai, S. D. & Currie, R. W. (2016). Effects of wintering environment and parasite-pathogen interactions on honey bee colony loss in north temperate regions. Plos One. 11. https://doi.org/10.1371/journal.pone.0159615

Elzen, P. J., Baxter, J. R., Spivak, M., Wilson, W. T. (2000). Control of Varroa jacobsoni Oud. resistant to fluvalinate and amitraz using coumaphos. Apidologie, 31, 437 – 441.

https://doi.org/10.1051/apido:2000134

Elzen, P. J. & Westervelt, D. (2002). Detection of coumaphos resistance in Varroa destructor in Florida. Am. Bee J., 142, 291–292.

Gray, A., Brodschneider, R., Adjlane, N., Ballis, A., Brusbardis, V., Charriиre, J.-D., Chlebo, R., F. Coffey, M., Cornelissen, B., Amaro da Costa, C., Csбki, T., Dahle, B., Danihlнk, J., Dražicґ, M. M., Evans, G., Fedoriak, M., Forsythe, I., de Graaf, D., Gregorc, A., … Soroker, V. (2019). Loss rates of honey bee colonies during winter 2017/18 in 36 countries participating in the COLOSS survey, including effects of forage sources. Journal of Apicultural Research, 58(4), 479–485. https://doi.org/10.1080/00218839.2019.1615661

Gray, A., Adjlane, N., Arab, A., Ballis, A., Brusbardis, V., Charriиre, J.-D., Chlebo, R., Coffey, M. F., Cornelissen, B., Amaro da Costa, C., Dahle, B., Danihlik, J., Dražicґ, M. M., Evans, G., Fedoriak, M., Forsythe, I., Gajda, A., de Graaf, D. C., Gregorc, A., … Brodschneider, R. (2020). Honey bee colony winter loss rates for 35 countries participating in the COLOSS survey for winter 2018–2019, and the effects of a new queen on the risk of colony winter loss. Journal of Apicultural Research, 59(5), 744–751.https://doi.org/10.1080/00218839.2020.1797272

Hristov P., Shumkova R., Palova, N. & Neov, B. (2021). Honey Bee Colony Losses: Why Are Honey Bees Disappearing? Sociobiology, 68(1), 1-13. https://doi.org/https://doi.org/10.13102/sociobiology.v68i1.5851

Insolia, L., Molinari, R,, Rogers, S. R., Williams, G. R. et al. (2022). Scientific Reports, 12: Article number: 20787.

Iwasaki, J. M. & Hogendoorn, K. (2021). How protection of honey bees can help and hinder bee conservation. Current Opinion in Insect Science, 46, 112-118. https://doi.org/10.1016/j.cois.2021.05.005

Khalifa, S. A. M., Elshafiey, E. H., Shetaia, A. A., Abd El-Wahed, Aida A. et al. (2021). Overview of Bee Pollination and Its Economic Value for Crop Production. Insects, 12(688). https://doi.org/10.3390/insects12080688

Kleijn, D., Winfree, R., Bartomeus, I. et al. (2015). Delivery of crop pollination services is an insufficientargument for wild pollinator conservation. Nat. Commun.,6 (7414). https://doi.org/10.1038/ncomms8414

Koev, K. & Petrova, N. (2023). Study of bee mortality in Bulgaria during the winter period of 2022/2023. Intelligent animal husbandry, 2, 2815-4193. https://doi.org/10.15547/joiah.2023.01.005

Mozes-Koch, R., Slabezki, Y., Efrat, H., Kalev, H. (2000). First detection in Israel of fluvalinate resistance in the Varroa mite using bioassay and biochemical methods. Exp. Appl. Acarol., 24, 35–43. https://doi.org/10.1023/A:1006379114942

Noël, A., Conte, Y. L. & Mondet, F. (2020). Varroa destructor: how does it harm Apis mellifera honey bees and what can be done about it? Emerging Topics in Life Sciences, 4, 45–57. https://doi.org/10.1042/ETLS20190125

Ollerton, J, Winfree, R, Tarrant, S. (2011). How many flowering plants are pollinated by animals? Oikos, 120, 321–326. https://doi.org/10.1111/j.1600-0706.2010.18644.x

Rodriguez-Dehaibes, S.R., Otero-Colina, G., Sedas, V.P., Jimünez, J. A. V. (2005). Resistance to amitraz and flumethrin in Varroa destructor populations from Veracruz, Mexico. J. Apic. Res., 44, 124–125. https://doi.org/10.1080/00218839.2005.11101162

Rosenkranz, P.,Aumeier, P. & Ziegelmann, B. (2010). BiologyandControlofVarroadestructor. J. Invertebr. Pathol., 103, 96–119. https://doi.org/10.1016/j.jip.2009.07.016

Spreafico, M., Eürdegh, F. R., Bernardinelli, I., Colombo, M. (2001). First detection of strains of Varroa destructor resistant to coumaphos. Results of laboratory tests and field trials. Apidologie, 32, 49–55. https://doi.org/10.1051/apido:2001110

VanEngelsdorp, D., Tarpy, D. R., Lengerich, E. J. & Pettis, J. S. (2013). Idiopathic brood disease syndrome and queen events as precursors of colony mortality in migratory beekeeping operations in the eastern United States. Prevent. Vet. Med., 108, 225–233. http://dx.doi.org/10.1016/j.prevetmed.2012.08.004

Vilarem, C., Piou, V., Vogelweith, F. & Vѐtillard, A. (2021). Varroa destructor from the Laboratory to the Field: Control, Biocontrol and IPM Perspectives. A Review. Insects, 12(800). https://doi.org/10.3390/insects12090800

Fedoriak Mariia, Shkrobanets Oleksandr. Loss rates of honey bee colonies after the winter of 2021/22 during the war in Ukraine /18th COLOSS eConference • 2 & 3 November 2022/ 2022Proceedings18thCOLOSS-ConferencePDF (coloss.org).

Downloads


Abstract views: 29

Published

2024-07-24

Issue

Section

ЕКОЛОГІЯ