COMPARATIVE ESTIMATION OF THE ACCURACY OF SIMULATION MODELING OF SOIL COVER AND FORECAST OF CARTOGRAMS OF AGRO-INDUSTRIAL GROUPS OF SOILS

Authors

  • V. CHERLINKA Yuriy Fedkovych Chernivtsi National University Author
  • Yu. DMYTRUK Yuriy Fedkovych Chernivtsi National University Author
  • V. ZAHAROVSKYY Yuriy Fedkovych Chernivtsi National University Author

DOI:

https://doi.org/10.31861/biosystems2017.02.298

Keywords:

soil map, cartogram of agro-industrial groups of soils, training data set, simulation, morphometric parameters, DEM, predicative algorithms

Abstract

The main goal of the mathematical experiment was to compare the accuracy of the construction of predicative maps, depending on the type of input data, in particular the soil map and the complete or abbreviated (without definitions by composition of grain size) variants of the cartograms of agro-industrial soil groups. The tasks were solved: by building a digital relief model (DEM); digitization of cartographic materials; generation of a set of maps of morphometric and other derived characteristics; the analysis of the connections and the role of the mentioned parameters in the variability of the soil cover; creation of predicative map-versions of soils and cartograms of agro-industrial groups of soils. Object of research: a fragment of the territory of the Chernivtsi region with complex geomorphological conditions. Main methods used: correlation analysis; the principal component method; predicative algorithms Decision Trees, Random Forests and K-Nearest Neighbors. On the basis of the correlation analysis, the tightness of the connection and the role of predictors (independent variables) in the variability of the soil cover were assessed, and the analysis of the main components involved the selection of 9 basic ones: absolute altitude; topographic moisture index; the amount of solar radiation per unit area; steepness of slopes; longitudinal and maximum curvature of the topographic surface; accumulation, length and distance to water flow. The quality of predicted cartographic materials was estimated using the Cohen’s kappa coefficient. Differences in the qualitative characteristics of the obtained simulated map-versions are established and it is shown that the morphometric parameters of the relief and its derivatives are a reliable basis for predicative modeling. An extended assessment of the quality of the map-models is made, depending on the type of input data and it is shown that the most accurate predictor cartogram of complete agro-industrial soil groups is used with the set of predictors used. Differences in the quality of predictive soil maps were established by using 3 types of predicative algorithms and it was shown that classification models, in particular, Decision Trees and Random Forests, which allowed obtaining up to 93% of the coincidence of real and model data, were the most suitable for such tasks. The possibilities of constructing forecast maps of soils using a standard set of materials that can be accessed by soil scientists in modern Ukrainian realities are shown: soil and topographic maps in conjunction with free full-featured software - GRASS and Quantum geoinformation systems, Easy Trace vectorizer and R-Statistic, language and environment for statistical computing.

References

A. B. Achasov Dani dystancijnogho zonduvannja jak osnova kartoghrafuvannja gruntiv: ekonomichnyj aspekt. / A. B. Achasov, Gh. V. Titenko, V. I. Kurilov // Visnyk Kharkivsjkogho nacionaljnogho universytetu imeni V. N. Karazina. — Serija: Ekologhija. – 2015. Vyp. 10. – S. 60–66. URL http://journals.uran.ua/visnukkhnu_ecology/article/download/25458/33191

Breiman L. Random forests. / L. Breiman // Machine learning. - 2001. – Vol. 45, № 1. – Р. 5-32. URL https://doi.org/10.1023/A:1010933404324

Browning, D. M. Digital soil mapping in the absence of field training data: A case study using terrain attributes and semiautomated soil signature derivation to distinguish ecological potential / D. M. Browning, M. C. Duniway // Applied and Environmental Soil Science. – 2011. URL https://doi.org/10.1155/2011/421904

Machine learning for predicting soil classes in three semi-arid landscapes / C. W. Brungard, J. L. Boettinger, M. C. Duniway [et al.] // Geoderma. – 2015. – Vol. 239. – P. 68–83. URL https://doi.org/10.1016/j.geoderma.2014.09.019

Bui E. N. A strategy to fill gaps in soil survey over large spatial extents: an example from the Murray– Darling basin of Australia / E. N. Bui, C. J. Moran // Geoderma. – 2003. – Vol. 111 (1). – P. 21–44. URL https://doi.org/10.1016/s0016-7061(02)00238-0

An appropriate data set size for digital soil mapping in Erechim, Rio Grande do Sul, Brazil / A. T. Caten, R. S. D. Dalmolin, F. d. A. Pedron [et al.] // Revista Brasileira de Ciência do Solo. – 2013. – Vol. 37 (2). – P. 359–366. URL https://doi.org/10.1590/s0100-06832013000200007

Cherlinka V. R. Problemy stvorennja, gheorektyfikaciji ta vykorystannja krupnomasshtabnykh cyfrovykh modelej reljjefu / V. R. Cherlinka, Ju. M. Dmytruk // Gheopolytyka y эkogheodynamyka reghyonov. – 2014. – Vol. 10 (1). – P. 239-244. URL http://geopolitika.crimea.edu/arhiv/2014/tom10-v-1/040cherlin.pdf

CherlinkaV. R. Adaptacija velykomasshtabnykh kart gruntiv do jikh praktychnogho vykorystannja u GhIS. In: Aghrokhimija i gruntoznavstvo. Mizhvidomchyj tematychnyj naukovyj zbirnyk. – 2015. – Vyp. 84. TOV «Smughasta typoghrafija», Kharkiv, pp. 20–28. URL http://agrosoil.yolasite.com/resources/2015-AiG-84-pp20-28.pdf

Cherlinka V. Using Geostatistics, DEM and Remote Sensing to Clarify Soil Cover Maps of Ukraine. In: Dent, D., Dmytruk, Y. (Eds.), Soil Science Working for a Living: Applications of soil science to presentday problems. Springer-Verlag GmbH, Cham, Switzerland, 2017. – Ch. 7, pp. 89–100. URL https://link.springer.com/chapter/10.1007/978-3-319-45417-7_7

Cutler A. Random Forests / A. Cutler, D. R. Cutler, J. R. Stevens. – Springer US, Boston, MA, 2012. – pp. 157–175. URL https://doi.org/10.1007/978-1-4419-9326-7_5

Debella-Gilo M. Spatial prediction of soil classes using digital terrain analysis and multinomial logistic regression modeling integrated in GIS / M. DebellaGilo, B. Etzelmüller // Examples from Vestfold County, Norway. Catena. – 2009. – Vol. 77 (1). – P. 8–18. URL https://doi.org/10.1016/j.catena.2008.12.001

Dobos, E., Hengl, T., 2009. Soil mapping applications. In: Hengl, T., Reuter, H. I. (Eds.), Geomorphometry: Concepts, Software, Applications. Vol. 33 of Developments in Soil Science. Elsevier, Amsterdam, Ch. 20, pp. 461–479. URL https://doi.org/10.1016/s0166-2481(08)00020-2

EasyTrace group, 2015. Easy Trace 7.99. Digitizing software. URL http://www.easytrace.com

Feng, C., Michie, D., 1994. Machine learning of rules and trees. Machine learning, neural and statistical classification, 50–83. URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.27.355&rep=rep1&type=pdf

Florinsky, I. V., 2016. Digital Terrain Analysis in Soil Science and Geology, 2nd Edition. ACADEMIC PRESS / Elsevier, Amsterdam. URL https://doi.org/10.1016/c2015-0-02363-2

Giasson, E., Figueiredo, S. R., Tornquist, C. G., Clarke, R. T., 2008. Digital soil mapping using logistic regression on terrain parameters for several cological regions in Southern Brazil. In: Hartemink, A. E., McBratney, A. B., de Lourdes MendonçaSantos, M. (Eds.), Digital Soil Mapping with Limited Data. Springer Netherlands, Amsterdam, Ch. 19, pp. 225–232. URL https://doi.org/10.1007/978-1-4020-8592-5_19

GRASS Development Team, 2017. Geographic Resources Analysis Support System (GRASS GIS) Software. Version 7.2. URL http://grass.osgeo.org

Grinand C. Extrapolating regional soil landscapes from an existing soil map: Sampling intensity, validation procedures, and integration of spatial context / C. Grinand, D. Arrouays, B. Laroche, M. P. Martin // Geoderma. – 2008. – Vol. 143 (1). – P. 180–190. URL https://doi.org/10.1016/j.geoderma.2007.11.004

Hengl, T., 2009. A practical guide to geostatistical mapping, 2nd Edition. Office for Official Publications of the European Communities, Luxembourg. URL http://www.academia.edu/download/40396676/A_Practical_Guide_to_Geostatistical_Mapping.pdf

An overview and comparison of machine-learning techniques for classification purposes in digital soil mapping / B. Heung, H. C. Ho, J. Zhang, A. Knudby, C. E. Bulmer, M. G. Schmidt // Geoderma. – 2016. – 265. – P. 62–77. URL https://doi.org/10.1016/j.geoderma.2015.11.014

Heung, B. Comparing the use of training data derived from legacy soil pits and soil survey polygons for mapping soil classes / B. Heung, M. Hodúl, M. G. Schmidt // Geoderma. – 2017. – Vol. 290. – P. 51–68. URL https://doi.org/10.1016/j.geoderma.2016.12.001

Updating the 1:50,000 Dutch soil map using legacy soil data: A multinomial logistic regression approach / B. Kempen, D. J. Brus, G. B. M. Heuvelink [et al.] // Geoderma. – 2009. – Vol. 151 (3). – P. 311–326. URL https://doi.org/10.1016/j.geoderma.2009.04.023

Kuhn M. Building Predictive Models in R Using the caret Package / M. Kuhn // Journal of Statistical Software. – 2008. – Vol. 28 (5). – P. 1-26. URL https://doi.org/10.18637/jss.v028.i05

Lagacherie P. Mapping of reference area representativity using a mathematical soilscape distance / P. Lagacherie, J. M. Robbez-Masson, N. Nguyen-The, J. P. Barthès // Geoderma. – 2001. – Vol. 101 (3-4). – Vol. 105–118. URL https://doi.org/10.1016/s0016-7061(00)00101-4

Landis J. R. The measurement of observer agreement for categorical data / J. R. Landis, G. G. Koch // Biometrics. – 1977. – Vol. 33 (1). – P. 159–174. URL https://doi.org/10.2307/2529310

Li W. A Random-Path Markov Chain Algorithm for Simulating Categorical Soil Variables from Random Point Samples / C. Zhang, W. Li // Soil Science Society of America Journal. – 2007. – Vol. 71 (3). – P. 656–668. URL https://doi.org/10.2136/sssaj2006.0173

Liu, B., 2011. Web Data Mining: Exploring Hyperlinks, Contents and Usage Data, 2nd Edition. Springer-Verlag GmbH, London New York Dordrecht. URL https://doi.org/10.1007/978-3-642-19460-3

MacMillan, R. A., 2008. Experiences with applied DSM: protocol, availability, quality and capacity building. In: Hartemink, A. E., McBratney, A. B., de Lourdes Mendonça-Santos, M. (Eds.), Digital Soil Mapping with Limited Data. Springer Netherlands, Amsterdam, pp. 113–135. URL https://doi.org/10.1007/978-1-4020-8592-5_10

Malone, B. P., Minasny, B., McBratney, A. B., 2016. Using R for Digital Soil Mapping. Progress in Soil Science. Springer International Publishing. URL https://doi.org/10.1007/978-3-319-44327-0

McBratney A. B. On digital soil mapping / A. B. McBratney, M. L. M. Santos, B. Minasny // Geoderma. – 2003. – Vol. 117 (1-2). – P. 3-52. URL https://doi.org/10.1016/s0016-7061(03)00223-4

Poljchyna S. M. Zastosuvannja suchasnoji systemy klasyfikaciji gruntiv FAO/WRB do karty gruntovogho pokryvu Chernivecjkoji oblasti / S. M. Poljchyna, V. A. Nikorych, O. A. Danchu // Gruntoznavstvo. –2004. – Vol. 5 (1–2),. – P. 27–33. URL http://arr.chnu.edu.ua/jspui/bitstream/123456789/471/1/Nikorich.pdf

Postanova Prezydiji Nacionaljnoji akademiji ..., 2017. Orghanizacijna struktura, porjadok formuvannja ta funkcionuvannja Gruntovo-informacijnogho centru Ukrajiny. Postanova Prezydiji Nacionaljnoji akademiji aghrarnykh nauk Ukrajiny. 20.09.2017 r. Protokol #13. URL http://issar.com.ua/downloads/postanova_vid_20_veresnya_2017_protokol_no13_organizaciyna_struktura_poryadok_formuvannya_gic.pdf

QGIS Development Team, 2015. QGIS Geographic Information System. URL http://qgis.osgeo.org

R Development Core Team, 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing. URL http://www.rproject.org

Scull P. Predictive soil mapping: a review / P. Scull, J. Franklin, O. A. Chadwick, D. McArthur // Progress in Physical Geography. - 2003. – Vol. 27 (2). – P. 171–197. URL https://doi.org/10.1191/0309133303pp366ra

Venables, W. N., Ripley, B. D. 2002. Modern Applied Statistics with S, 4th Edition. Vol. 53 (1) of Statistics and Computing. Springer-Verlag, New York. URL http://dx.doi.org/10.1007/978-0-387-21706-2

Walter, C., Lagacherie, P., Follain, S., 2006. Integrating pedological knowledge into digital soil mapping. In: Lagacherie, P., McBratney, A. B., Voltz, M. (Eds.), Digital Soil Mapping: An Introductory Perspective. Vol. 31 of Developments in Soil Science. Elsevier, Amsterdam, Ch. 22, pp. 281–301. URL https://doi.org/10.1016/s0166-2481(06)31022-7

Downloads


Abstract views: 46

Published

2017-12-19

Issue

Section

ГРУНТОЗНАВСТВО