EFFECT OF LOW-LEVEL LASER IRRADIATION ON THE BISPHENOL AINDUCED FREE RADICAL PROCESSES

Authors

  • V. BORSCHOVETSKA Yuriy Fedkovych Chernivtsi National University Author
  • M. RUBANETS Yuriy Fedkovych Chernivtsi National University Author

DOI:

https://doi.org/10.31861/biosystems2020.02.125

Keywords:

low-level laser irradiation, reactive oxygen species, bisphenol A, free radical processes, antioxidant defences system

Abstract

One of these novel application areas is LLLT for drug-induced liver injury. LLLI employs visible (generally red) or
near-infrared light generated from a laser or light-emitting diode (LED) system. The light is typical of narrow spectral
width between 600-1000 nm. Despite significant research efforts around the effects and molecular mechanisms of LLLT
in various cells or tissues, the appropriate doses of radiation, energy densities, time, and irradiation conditions as well
as the appropriate individual settings in the various laser devices, which will predictably lead to optimal therapeutic
effects, have not been clarified yet. In the present study, the effect of low-level laser irradiation on oxidative stress parameters
in rats under the conditions of BPA administration was investigated. Toxic liver injury induced by bisphenol A
(BPA) administration at 50 mg/kg body wt by gavage for 3 days once a day. Low-level laser irradiation was performed
after each administration of xenobiotic. A laser diode (50 mW) with 650 nm continuous wavelength was applied to the
skin surface at the anatomical site of the liver. The administration of BPA leads to the evaluated of free radical generation
and decrease in SOD, CAT and GPx activities in the liver of bisphenol A-exposed animals. The enhanced processes
of the generation of superoxide radicals and nitric oxide and exhausting level of antioxidant enzymes under the conditions
of BPA administration leads to the increased oxidative damage of lipid and protein in subcellular fraction. The
low-level laser irradiation of BPA-treated animals leads to the increase of enzymatic activity of antioxidant defences
system, a decrease of free-radical production and oxidative protein and lipid damage in microsome and cytosol.

References

Astuti S. D., Prasaja B. I., Prijo T. A. An in vivo photodynamic therapy with diode laser to cell activation of kidney dysfunction. Journal of Physics: Conference Series. 2017; 853(1): 1–8. doi:10.1088/1742-6596/853/1/012038

Babu S., Uppu S., Claville M. O., Uppu R. M. Prooxidant actions of bisphenol A (BPA) phenoxyl radicals: Implications to BPA-related oxidative stress and toxicity. Toxicology Mechanisms and Methods. 2013; 23(4): 273–280. doi:10.3109/15376516.2012.753969

Bosch-panadero E., Fontao S. M., Priego A. R. Bisphenol (A) uremic toxin to take into account in the Renal disease in Hemodialysis. Rev. Colomb. Nefrol. 2017; 4(1): 42–53. doi:10.22265/acnef.4.1.256

Bowers L. D., Wong E. T. Kinetic serum creatinine assays. II. A critical evaluation and review. Clinical Chemistry. 1980; 26(5): 555–561.doi:10.1093/clinchem/26.5.555

Buege J. A., Aust S. D. Microsomal Lipid Peroxidation. Methods of Enzymology. 1978; 52, 302–310. doi:10.1088/1742-6596/71/1/012004

Careghini A., Mastorgio A. F., Saponaro S., Sezenna E. Bisphenol A, nonylphenols, benzophenones, and Зenzotriazoles in soils, groundwater, surface water, sediments, and food: a review. 2015; Environmental Science and Pollution Research. 2015; 22(8): 5711–5741. doi:10.1007/s11356-014-3974-5

Chen H., Wang H., Li Y., Liu W., Wang C., Chen Z. Biological effects of low-level laser irradiation on umbilical cord mesenchymal stem cells. AIP Advances. 2016; 6, 1–9. doi:10.1063/1.4948442

Chen M., Xu B., Ji W., Qiao S., Hu N., Hu Y., Wu W., Qiu L., Zhang R., Wang Y., Wang S., Zhou Z., Xia Y., Wang X. Bisphenol A Alters n-6 Fatty Acid Composition and Decreases Antioxidant Enzyme Levels in Rat Testes: A LC-QTOF-Based Metabolomics Study. PLoS ONE. 2012; 7(9): 1–8. doi:10.1371/journal.pone.0044754

Crocker C. L. Rapid determination of urea nitrogen in serum or plasma without deproteinization. The American Journal of Medical Technology. 1967; 33(5): 361–365.

De Freitas L. F., Hamblin M. R. Proposed Mechanisms of Photobiomodulation or Low-Level Light Therapy. IEEE Journal on Selected Topics in Quantum Electronics. 2016; 22(3): 1–37. doi:10.1109/JSTQE.2016.2561201

Kang J. H., Katayama Y., Kondo F. Biodegradation or metabolism of bisphenol A: From microorganisms to mammals. Toxicology. 2006; 217: 81–90. doi:10.1016/j.tox.2005.10.001

Kaur S., Saluja M., Bansal M. P. Bisphenol A induced oxidative stress and apoptosis in mice testes: odulation by selenium. Andrologia. 2018; 50(3): e12834. https://doi.org/10.1111/and.12834

Kourouma A., Quan C., Duan P., Qi S., Yu T., Wang Y., Yang K. Bisphenol A Induces Apoptosis in Liver Cells through Induction of ROS. Advances in Toxicology. 2015; 2015: 1–10. doi:10.1155/2015/901983

Krieter D. H., Canaud B., Lemke H.-D., Rodriguez A., Morgenroth A., von Appen K., Dragoun G.-P., Wanner C. Bisphenol A in Chronic Kidney Disease. Artificial Organs. 2013; 37(3): 283–290. doi:10.1111/j.1525-1594.2012.01556.x

Mas S., Egido J., González-Parra E. The importance of bisphenol A, an uraemic toxin from exogenous sources, in haemodialysis patients. Nefrologia. 2017; 37(3): 229–234. doi:10.1016/j.nefroe.2017.06.004

National Research Council (US) Committee for the pdate of the Guide for the Care and Use of Laboratory Animals. Guide for the Care and Use of aboratory Animals (8th Ed.). National Academies Press.; 2011. doi:10.2307/1525495

National Toxicology Program U.S. Department of Health and Human Services, & Center. NTP-CERHR monograph on the potential human reproductive and developmental effects of bisphenol A. Center for The 186 Biological sytems. Vol. 12. Is. 2. 2020 Evaluation of Risks To Human Reproduction, 2008.

Ohkawa H., Ohishi N., Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry. 1979; 95(2), 351–358. doi:10.1016/0003-2697(79)90738-3

Oliveira F. A. M., Moraes A. C. M., Paiva A. P., Schinzel V., Correa-Costa M., Semedo P., Castoldi A., Cenedeze M. A., Oliveira R. S. M. F., Bastos M. G., Cĝmara N. O. S., Sanders-Pinheiro H. Low-level laser therapy decreases renal interstitial fibrosis. Photomedicine and Laser Surgery. 2012; 30(12): 705–713. doi:10.1089/pho.2012.3272

Quesnot N., Bucher S., Fromenty B., Robin M. A. Modulation of metabolizing enzymes by bisphenol A in human and animal models. Chemical Research in Toxicology. 2014; 27(9): 1463–1473. doi:10.1021/tx500087p

Shmarakov I. O., Borschovetska V. L., Ivanishchuk L. P., Marchenko M. M. Hepatotoxicity of bisphenol A under conditions of differential supplementation with retinoids. Ukr. Biochem. J. 2016; 88(3), 99–105. doi:10.15407/ubj88.03.099

Sonavane M., Gassman N. R. Bisphenol A coexposure effects: a key factor in understanding BPA’s complex mechanism and health outcomes. Critical Reviews in Toxicology. 2019; 49(5): 371–386. doi:10.1080/10408444.2019.1621263

Trasande L., Attina T. M., Trachtman H. Bisphenol A exposure is associated with low-grade urinary albumin excretion in children of the United States. Kidney International. 2013; 83(4): 741–748. doi:10.1038/ki.2012.422

Ucero A. C., Sabban B., Benito-Martin A., Carrasco S., Joeken S., Ortiz A. Laser therapy in metabolic syndrome-related kidney injury. Photochemistry and Photobiology. 2013; 89(4): 953–960. doi:10.1111/php.12055

Waterborg J. H., Matthews H. R. The Lowry method for protein quantitation. Methods. Methods Mol. Biol. 1994; 32: 1–4. doi:10.1385/1-59259-169-8:7

Xin F., Jiang L., Liu X., Geng C., Wang W., Zhong L., Yang G., Chen M. Bisphenol A induces oxidative stress-associated DNA damage in INS-1 cells. Mutation Research - Genetic Toxicology and Environmental Mutagenesis. 2014. 769, 29–33. doi:10.1016/j.mrgentox.2014.04.019

Downloads


Abstract views: 22

Published

2020-12-23

Issue

Section

БІОХІМІЯ, БІОТЕХНОЛОГІЯ, МОЛЕКУЛЯРНА ГЕНЕТИКА