BRIDGING THE GAP BETWEEN KACHINSKY AND FAO/USDA PARTICLE-SIZE DISTRIBUTION SYSTEMS: MATHEMATICAL MODELING AND PEDOGENETIC HARMONIZATION
DOI:
https://doi.org/10.31861/biosystems2025.03.436Keywords:
Soil texture, Particle-size distribution (PSD), Kachinsky system, FAO/WRB standards, LLSI algorithm, Fractal scaling, Retisols, Lithogenic heterogeneityAbstract
This study addresses the methodological challenges of converting soil particle-size distribution (PSD) data from the regional Kachinsky system to international FAO/USDA standards, focusing on the diagnostic of lithogenic heterogeneity in Retisols.
We compared various parametric models (Fredlund 4P, van Genuchten, Skaggs) and non-parametric spline functions. A specific Log-Linear Sectional Interpolation (LLSI) algorithm was developed to estimate the 2 µm clay threshold. To bridge the 1–2 mm data gap inherent in the Kachinsky method, a fractal power-law scaling approach was applied for sand fraction extrapolation.
Traditional fixed-ratio conversions (e.g., physical clay/2) proved inaccurate, yielding classification errors of 30–50%. The proposed LLSI algorithm, combined with fractal scaling and pedogenetic corrections for organic matter and carbonates, achieved high predictive accuracy (R2 > 0.95). Furthermore, we quantified the systematic bias of laser diffraction (LD), which underestimates clay content by 8–15% compared to sedimentation methods due to particle non-sphericity.
Effective harmonization requires continuous modeling of the PSD curve rather than simple arithmetic coefficients. The integration of the LLSI method and fractal extrapolation provides a robust framework for incorporating regional soil archives into global databases, ensuring the accurate representation of complex soil textures like those of the Precarpathian Retisols.
References
1. Andersson, S. (1990). Physical soil investigations in cultivated land, XXVI. On the space-filling properties of mineral soil and humus [Theoretical study]. Swedish University of Agricultural Sciences. [Sweeden].
2. Assouline, S., Tessier, D., & Bruand, A. (1998). A conceptual model of the soil water retention curve. Water Resources Research, 34(2), 223–231. https://doi.org/10.1029/97WR03039
3. Bhatt, R., Kunal, Garg, A. K., Majumder, D., Verma, K. K., & de Oliveira, M. W. (2025). Soil texture: Unlocking fertility and productivity for better crops. Agriculture Association of Textile Chemical and Critical Reviews Journal, 13(3), 396–408. https://doi.org/10.21276/AATCCReview.2025.13.03.396
4. Callesen, I., Palviainen, M., Armolaitis, K., Rasmussen, C., & Kjønaas, O. J. (2023). Soil texture analysis by laser diffraction and sedimentation and sieving–method and instrument comparison with a focus on Nordic and Baltic forest soils. Frontiers in Forests and Global Change, 6, 1144845. https://doi.org/10.3389/ffgc.2023.1144845
5. Fredlund, M. D., Fredlund, D. G., & Wilson, G. W. (2000). An equation to represent grain-size distribution. Canadian Geotechnical Journal, 37(4), 817–827. https://doi.org/10.1139/t00-015
6. Haverkamp, R., & Parlange, J. Y. (1986). Predicting the water-retention curve from particle-size distribution: 1. Sandy soils without organic matter. Soil Science, 142(6), 325–339.
7. https://doi.org/10.1111/j.1365-2389.1997.tb00574.x
8. Laktionova, T. M. (2011). On the possibility of using the USDA/FAO soil texture classification in Ukraine. Ahrokhimiia i Gruntoznavstvo, (74), 36–46 [Ukraine].
9. Marhoul, A., Herza, T., Kozák, J., Janků, J., Jehlička, J., Borůvka, L., ... & Polák, P. (2025). Approximation of the soil particle-size distribution curve using a NURBS curve. Soil & Water Research, 20(1). https://doi.org/10.17221/139/2024-SWR
10. Moreno-Maroto, J. M., & Alonso-Azcárate, J. (2022). Evaluation of the USDA soil texture triangle through Atterberg limits and an alternative classification system. Applied Clay Science, 229, 106689. https://doi.org/10.1016/j.clay.2022.106689
11. Nikorych, V. A. (2015). Diagnostics of lithogenic heterogeneity of brown-podzolic soils based on particle-size distribution. Ahrokhimiia i Gruntoznavstvo, (84), 11–20.
12. Rousseva, S. S. (1997). Data transformations between soil texture schemes. European Journal of Soil Science, 48(4), 749-758.
13. Sadovski, A., Ivanova, M. (2020). Transformation of soil texture schemes and determination of water-physical properties of soils. Eurasian Journal of Soil Science, 9 (4), 306-313. https://doi.org/10.18393/ejss.760201
14. Shang, S. (2013). Log‐Cubic Method for Generation of Soil Particle Size Distribution Curve. The Scientific World Journal, 2013(1), 579460. http://dx.doi.org/10.1155/2013/579460
15. Shangguan, W., Dai, Y., García-Gutiérrez, C., & Yuan, H. (2014). Particle‐size distribution models for the conversion of Chinese data to FAO/USDA system. The Scientific World Journal, 2014(1), 109310. https://doi.org/10.1155/2014/109310
16. Shein, E. (2009). The particle-size distribution in soils: Problems of the methods of study, interpretation of the results, and classification. Eurasian Soil Science. 42. 284-291.
17. Skaggs, T. H., Arya, L. M., Shouse, P. J., & Mohanty, B. P. (2001). Estimating particle-size distribution from limited soil texture data. Soil Science Society of America Journal, 65(4), 1038–1044. https://doi.org/10.2136/sssaj2001.6541038x
18. Yang XianLong, Y. X., Zhang QingYin, Z. Q., Li XueZhang, L. X., Jia XiaoXu, J. X., Wei XiaoRong, W. X., & Shao Ming'an, S. M. A. (2015). Determination of soil texture by laser diffraction method. https://doi.org/10.2136/sssaj2015.04.0164