OPTIMIZATION OF FLOWER STRIPS FOR ATTRACTING INSECTS PROVIDING DUAL ECOSYSTEM SERVICES IN AGROECOSYSTEMS: AN ANALYTICAL REVIEW

Authors

  • M.M. FEDORIAK Yuriy Fedkovych Chernivtsi National University Author
  • D.V. FEDORIAK Yuriy Fedkovych Chernivtsi National University Author
  • S.V. RUDENKO Yuriy Fedkovych Chernivtsi National University Author
  • S.S. RUDENKO Vasyl Stus Donetsk National University, Author

DOI:

https://doi.org/10.31861/biosystems2025.03.411

Keywords:

conservation biological control, resource concentration hypothesis, enemy hypothesis, parasitoid nectar provision hypothesis, floral nectaries, extrafloral nectaries, chemical signals, flower color, scent, ecosystem services, pollination, biological control

Abstract

Parasitoid insects can be regarded as dual ecosystem service providers in agroecosystems, as they combine two key functions: pollination at the adult stage and biological pest control at the larval stage. Three classical ecological concepts – the enemy hypothesis, the resource concentration hypothesis, and the parasitoid nectar provision hypothesis –have formed the theoretical basis of conservation biological control aimed at creating favorable conditions for maintaining parasitoid viability and effectiveness. A key tool of this approach involves increasing plant diversity by establishing flower strips that serve as additional nectar resources for beneficial insects. However, the effectiveness of this measure is constrained by several limiting factors, including increased pressure from hyperparasitoids; reduced biological control efficiency when nectar resources in flower strips overlap for parasitoids and phytophagous insects; and the induction of parasitoid dispersal in response to resource convergence.

This article presents, for the first time, a scientific rationale for an approach to designing flower strips for conserving insects that provide dual ecosystem services. Our approach is focused on creating an autonomous trophic niche for parasitoids based on their preferences in nectar accessibility, as well as flower color and aromatic characteristics. Based on an analysis of the literature, specific nutritional and sensory priorities of parasitoids are identified in comparison with hyperparasitoids and pest insects, creating prerequisites for increasing the selectivity and stability of conservation biological control in agroecosystems.

The aim of this study is to identify and substantiate strategies for strengthening conservation biological control in agroecosystems by forming a highly specialized trophic niche for adult parasitoids through optimized plant species selection for flower strips, based on flower color, scent, and nectar productivity.

 

References

1. Arno, J., Oveja, M. F., &Gabarra, R. (2018). Selection of flowering plants to enhance the biological control of Tutaabsoluta using parasitoids. Biological Control, 122, 41-50.https://doi.org/10.1016/j.biocontrol.2018.03.016

2. Begg, G. S., Cook, S. M., Dye, R., Ferrante, M., Franck, P., Lavigne, C., ... & Birch, A. N. E. (2017). A functional overview of conservation biological control. Crop Protection, 97, 145-158. https://doi.org/10.1016/j.cropro.2016.11.008

3. Berndt, L. A. (2002). The effect of floral resources on the leafroller (Lepidoptera: Tortricidae) parasitoidDolichogenideatasmanica (Cameron) (Hymenoptera: Braconidae) in selected New Zealand vineyards (Doctoral dissertation, Lincoln University). Lincoln University Research Archive. https://hdl.handle.net/10182/3281

4. Blubaugh, C. K., Asplund, J. S., Smith, O. M., & Snyder, W. E. (2021). Does the “Enemies Hypothesis” operate by enhancing natural enemy evenness? Biological Control, 152, 104464. https://doi.org/10.1016/j.biocontrol.2020.104464

5. Brown, P. E., Frank, C. P., Groves, H. L., & Anderson, M. (1998). Spectral sensitivity and visual conditioning in the parasitoid wasp Trybliographarapae (Hymenoptera: Cynipidae). Bulletin of Entomological Research, 88(3), 239–245. https://doi.org/10.1017/S0007485300025864

6. Cahenzli, F., Sigsgaard, L., Daniel, C., Herz, A., Jamar, L., Kelderer, M., … &Pfiffner, L. (2019). Perennialflowerstripsforpestcontrolinorganicappleorchards: A pan-Europeanstudy. Agriculture, Ecosystems&Environment, 278, 43–53. https://doi.org/10.1016/j.agee.2019.03.011

7. Castillo, A., & Rojas, J. C. (2020). Color preference of three parasitoids imported to the Americas for the biological control of the coffee berry borer (Curculionidae: Scolytinae). Journal of Insect Science, 20(3), 3. https://doi.org/10.1093/jisesa/ieaa031

8. Chen, Y., Mao, J., Reynolds, O. L., Chen, W., He, W., You, M., &Gurr, G. M. (2020). Alyssum (Lobularia maritima) selectively attracts and enhances the performance of Cotesiavestalis, a parasitoid of Plutellaxylostella. Scientific Reports, 10, 6447. https://doi.org/10.1038/s41598-020-62021-y

9. Cornelius, M. L., Vinyard, B. T., & Gates, M. W. (2019). Use of flowering plants to enhance parasitism and predation rates on two squash bug species Anasa tristis andAnasaarmigera (Hemiptera: Coreidae). Insects, 10(10), 318.https://doi.org/10.3390/insects10100318

10. Colazza, S., Peri, E., & Cusumano, A. (2023). Chemical ecology of floral resources in conservation biological control. Annual Review of Entomology, 68(1), 13-29.https://doi.org/10.1146/annurev-ento-120220-124357

11. Denis, C., Riudavets, J., Gabarra, R., Molina, P., &Arnó, J. (2021). Selection of insectary plants for the conservation of biological control agents of aphids and thrips in fruit orchards–corrigendum. Bulletin of Entomological Research, 111(6), 768-768.https://doi.org/10.1017/S0007485321000183

12. El-Kareim, A. I., El-Naggar, M. E., &Marouf, A. E. (2007). Is Matricaria chamomilla a beneficial insectary plant? Journal of Plant Protection and Pathology, 32(8), 6777–6786. https://doi.org/10.21608/jppp.2007.220161

13. El‑Wakeil, N., Saleh, M. M. E., Gaafar, N., &Elbehery, H. (2017). Conservation biological control practices. In Biological control of pest and vector insects (pp. 41–69). IntechOpen. https://doi.org/10.5772/66312

14. Fataar, S., Kahmen, A., & Luka, H. (2019). Innate and learned olfactory attraction to flowering plants by the parasitoidCotesiarubecula (Marshall, 1885) (Hymenoptera: Braconidae): Potential impacts on conservation biological control. Biological Control, 132, 16–22. https://doi.org/10.1016/j.biocontrol.2019.03.002

15. Foti, M. C., Rostás, M., Peri, E., Park, K. C., Slimani, T., Wratten, S. D., & Colazza, S. (2017). Chemical ecology meets conservation biological control: identifying plant volatiles as predictors of floral resource suitability for an egg parasitoid of stink bugs. Journal of Pest Science, 90(1), 299-310. https://doi.org/10.1007/s10340-016-0758-3

16. Geneau, C. E., Wäckers, F. L., Luka, H., & Balmer, O. (2013). Effects of extrafloral and floral nectar of Centaurea cyanus on the parasitoid wasp Microplitis mediator: olfactory attractiveness and parasitization rates. Biological Control, 66 (1), 16-20. https://doi.org/10.1016/j.baae.2019.05.001

17. Giunti, G., Canale, A., Messing, R. H., Donati, E., Stefanini, C., Michaud, J. P., & Benelli, G. (2015). Parasitoid learning: current knowledge and implications for biological control. Biological control, 90, 208-219. https://doi.org/10.1016/j.biocontrol.2015.06.007Get rights and content

18. Giurfa, M., Vorobyev, M., Kevan, P., & Menzel, R. (1996). Detection of coloured stimuli by honeybees: minimum visual angles and receptor specific contrasts. Journal of Comparative Physiology A, 178(5), 699-709.https://doi.org/10.1007/BF00227381

19. Gurr, G. M., Wratten, S. D., & Barbosa, P. (2000). Success in conservation biological control of arthropods. In Biological control: Measures of success (pp. 105–132). Kluwer Academic Publishers. https://doi.org/10.1007/978‑94‑011‑4014‑0_4

20. Hassan, E., (1967). Untersuchungen uber die bedeutung der krant- und strauchschicht alsnahrungsquelleforimaginesentomophager Hymenopteren. ZeitschriftfiirAngewandteEntomologie, 60, 238-265. (No DOI found).

21. Heil, M. (2011). Nectar: generation, regulation and ecological functions. Trends in plant science, 16(4), 191-200. (No DOI found).

22. Heimpel, G. E. (2019). Linking parasitoid nectar feeding and dispersal in conservation biological control. Biological Control, 132, 36-41. S1049964418307448.https://doi.org/10.1016/j.biocontrol.2019.01.012

23. Heimpel, G. E., & Jervis, M. A. (2005). Does floral nectar improve biological control by parasitoids? Plant-provided food for carnivorous insects: a protective mutualism and its applications, 267-304. (No DOI found)

24. Herz, A. (2017). Alternative flowering crops as potential food sources for beneficial arthropods. Journal of Cultivated Plants /Journal für Kulturpflanzen, 69(3). (No DOI found)

25. Howard, C., Fountain, M. T., Brittain, C., Burgess, P. J., & Garratt, M. P. (2025). Flower margins support natural enemies adjacent to apple orchards but evidence of spill-over is mixed. Agriculture, Ecosystems & Environment, 379, 109327. https://doi.org/10.1016/j.agee.2024.109327

26. Idris, A. B., &Grafius, E. (1995). Wildflowers as nectar sources for Diadegmainsulare (Hymenoptera: Ichneumonidae), a parasitoid of diamondback moth (Lepidoptera: Yponomeutidae). Environmental Entomology, 24(6), 1726-1735.https://doi.org/10.1093/ee/24.6.1726

27. Jachowicz, N., &Sigsgaard, L. (2025). Highly diverse flower strips promote natural enemies more in annual field crops: A review and meta-analysis. Agriculture, Ecosystems & Environment, 381, 109412. https://doi.org/10.1016/j.agee.2025.109412

28. Kobiv, Y. (2004). Dictionary of Ukrainian scientific and folk names of vascular plants. Kyiv, Ukraine: Naukova Dumka, 800 pp. (InUkrainian) (No DOI found)

29. Kugimiya, S., Shimoda, T., &Takabayashi, J. (2024). Reinforced colour preference of parasitoid wasps in the presence of floral scent: A case study of a cross-modal effect. Animal Cognition, 27(1), 50. https://doi.org/10.1007/s10071-024-01890-6

30. Llandres, A. L., Verdeny-Vilalta, O., Jean, J., Goebel, F. R., Seydi, O., &Brévault, T. (2019). Cotton extrafloral nectaries as indirect defence against insect pests. Basic and Applied Ecology, 37, 24-34. https://doi.org/10.1016/j.baae.2019.05.001

31. Mаtray, S., & Herz, A. (2022). Flowering plants serve nutritional needs of Ascogaster quadridentata (Hymenoptera: Braconidae), a key parasitoid of codling moth. Biological Control, 171, 104950. https://doi.org/10.1016/j.biocontrol.2022.104950

32. Michereff, M. F. F., Magalhães, D. M., do Nascimento, I. N., Laumann, R. A., Borges, M., Withall, D. M., ... & Blassioli‐Moraes, M. C. (2024). Attracting Scelionidae egg parasitoids to enhance stink bug egg parasitisation in soybean crops using methyl salicylate and (E, E)‐α‐farnesene. Pest Management Science, 80(10), 5452-5464.https://doi.org/10.1002/ps.8274

33. Ne'eman, G., & Kevan, P. G. (2001). The effect of shape parameters on maximal detection distance of model targets by honeybee workers. Journal of Comparative Physiology A, 187(8), 653-660.https://doi.org/10.1007/s003590100237

34. Oliai, S. E., & King, B. H. (2000). Associative learning in response to color in the parasitoid wasp Nasoniavitripennis (Hymenoptera: Pteromalidae). Journal of Insect Behavior, 13(1), 55–69. https://doi.org/10.1023/A:1007763525685

35. Olson, D. M., &Wäckers, F. L. (2007). Management of field margins to maximize multiple ecological services. Journal of Applied Ecology, 44(1), 13–21. https://doi.org/10.1111/j.1365-2664.2006.01266.x

36. Petit, C., Ahuya, P., Le Ru, B., Kaiser-Arnauld, L., Harry, M., & Calatayud, P. A. (2018). Influence of prolonged dietary experience during the larval stage on novel odour preferences in adults of noctuid stem borer moths (Lepidoptera: Noctuidae). European Journal of Entomology, 115, 112–116. https://doi.org/10.14411/eje.2018.014

37. Rohrig, E., Sivinski, J., & Wharton, R. (2008). Comparison of parasitic Hymenoptera captured in Malaise traps baited with two flowering plants, Lobularia maritima (Brassicales: Brassicaceae) and Spermacoceverticillata (Gentianales: Rubiaceae). Florida Entomologist, 91(4), 621-627.https://doi.org/10.1653/0015-4040-91.4.621

38. Romeis, J. and F. L. Wa¨ckers. 2000. Feeding responses by female Pieris brassicae butterflies to carbohydrates and amino acids. Physiological Entomology 25: 247–253.https://doi.org/10.1046/j.1365-3032.2000.00188.x

39. Root, R. B. (1967). The niche exploitation pattern of the blue-gray gnatcatcher. Ecological monographs, 37(4), 317-350.https://doi.org/10.2307/1942327

40. Root, R. B. (1973). Organization of a plant‐arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea). Ecological monographs, 43(1), 95-124. https://doi.org/10.2307/1942161

41. Shrestha, B., Finke, D. L., &Piñero, J. C. (2019). The ‘Botanical Triad’: The presence of insectary plants enhances natural enemy abundance on trap crop plants in an organic cabbage agro-ecosystem. Insects, 10(6), 181. https://doi.org/10.3390/insects10060181

42. Shields, M. W., Johnson, A. C., Pandey, S., Cullen, R., González-Chang, M., Wratten, S. D., & Gurr, G. M. (2019). History, current situation and challenges for conservation biological control. Biological control, 131, 25-35. https://doi.org/10.1016/j.biocontrol.2018.12.010

43. Sigsgaard, L., Betzer, C., Naulin, C., Eilenberg, J., Enkegaard, A., & Kristensen, K. (2013). The effect of floral resources on parasitoid and host longevity: Prospects for conservation biological control in strawberries. Journal of Insect Science, 13(1), Article 104. https://doi.org/10.1673/031.013.10401

44. Sivinski, J., Wahl, D., Holler, T., Al Dobai, S., & Sivinski, R. (2011). Conserving natural enemies with flowering plants: Estimating floral attractiveness to parasitic Hymenoptera and attraction’s relationship to flower and plant morphology. Biological Control, 58(3), 208-214.https://doi.org/10.1016/j.biocontrol.2011.05.002

45. Spiteller, D. (2008). Plant defense strategies. Encyclopedia of Ecology. https://doi.org/10.1016/B978-008045405-4.00904-6

46. Thurman, J. H., & Furlong, M. J. (2024). Buckwheat (Fagopyrum esculentum) floral strips support natural enemies and maintain yields in organic green bean (Phaseolus vulgaris) crops. Biological Control, 191, 105476. https://doi.org/10.1016/j.biocontrol.2024.105476

47. Thompson, M. N., Russavage, E. M., & Bernauer, O. M. (2025). Making “scents” of how plant volatiles influence agriculturally important insects: A review. Environmental Entomology, nvaf108, 1–14. https://doi.org/10.1093/ee/nvaf108

48. Vattala, H. D., Wratten, S. D., Phillips, C. B., & Wäckers, F. L. (2006). The influence of flower morphology and nectar quality on the longevity of a parasitoid biological control agent. Biological Control, 39(2), 179–185. https://doi.org/10.1016/j.biocontrol.2006.06.003 research.lancaster-university.uk

49. Wäckers, F. L. (2004). Assessing the suitability of flowering herbs as parasitoid food sources: flower attractiveness and nectar accessibility. Biological control, 29(3), 307-314. https://doi.org/10.1016/j.biocontrol.2003.08.005

50. Wei, J., & Kang, L. (2011). Roles of (Z)-3-hexenol in plant-insect interactions. Plant signaling & behavior, 6(3), 369-371. https://doi.org/10.4161/psb.6.3.14452?urlappend=%3Futm_source%3Dresearchgate.net%26utm_medium%3Darticle

Downloads


Abstract views: 8

Published

2026-01-08

Issue

Section

ЕКОЛОГІЯ