REACTION OF DESMODESMUS ARMATUS TO THE PRESENCE OF IMAZAMOX – AN IMIDAZOLINONE DERIVATIVE
DOI:
https://doi.org/10.31861/biosystems2025.01.208Keywords:
herbicides, Imazamox, ALS inhibitors, Desmodesmus armatusAbstract
The study investigated the effect of the herbicide imazamox, which belongs to the class of ALS inhibitors, on the green microalga Desmodesmus armatus. A clear concentration-dependent effect was established: at low concentrations (0.01–0.1 mg/L), partial restoration of cell growth was observed, which may indicate the activation of compensatory mechanisms. In contrast, high doses (2.5–10 mg/L) led to rapid and sustained inhibition of cellular activity.
The results indicate a high sensitivity of D. armatus to imidazolinones and support the suitability of this species as a model organism for assessing the toxicity of herbicides that inhibit acetolactate synthase.
References
1. Vonk, J. A., & Kraak, M. H. (2020). Herbicide exposure and toxicity to aquatic primary producers. Reviews of Environmental Contamination and Toxicology Volume 250, 119-171 https://doi.org/10.1007/398_2020_48
2. Grasso, G., Cocco, G., Zane, D., Frazzoli, C., & Dragone, R. (2022). Microalgae-based fluorimetric bioassays for studying interferences on photosynthesis induced by environmentally relevant concentrations of the herbicide diuron. Biosensors, 12(2), 67. https://doi.org/10.3390/bios12020067
3. Onyango, J., van Bruggen, J. J. A., Kitaka, N., Simaika, J., & Irvine, K. (2024). Effects of combined nutrient and pesticide exposure on algal biomass, and Daphnia magna abundance. Environmental Systems Research, 13(1), 1. https://doi.org/10.1186/s40068-023-00326-3
4. Tan, S., Evans, R. R., Dahmer, M. L., Singh, B. K., & Shaner, D. L. (2005). Imidazolinone‐tolerant crops: history, current status and future. Pest Management Science: Formerly Pesticide Science, 61(3), 246-257. https://doi.org/10.1002/ps.993
5. Rojano-Delgado, A. M., Priego-Capote, F., Luque de Castro, M. D., & De Prado, R. (2015). Mechanism of imazamox resistance of the Clearfield® wheat cultivar for better weed control. Agronomy for Sustainable Development, 35, 639–648. https://doi.org/10.1007/s13593-014-0232-7
6. Massachusetts Department of Agricultural Resources. (n.d.). Imazamox. Retrieved from https://www.mass.gov/doc/imazamox/download
7. Staley, Z. R., Harwood, V. J., & Rohr, J. R. (2015). A synthesis of the effects of pesticides on microbial persistence in aquatic ecosystems. Critical reviews in toxicology, 45(10), 813-836. https://doi.org/10.3109/10408444.2015.1065471
8. Huang, J., Piao, X., Zhou, Y., & Li, S. (2024). Toxicity Assessment of 36 Herbicides to Green Algae: Effects of Mode of Action and Chemical Family. Agrochemicals, 3(2). https://doi.org/10.3390/agrochemicals3020012
9. Ceschin, S., Bellini, A., & Scalici, M. (2021). Aquatic plants and ecotoxicological assessment in freshwater ecosystems: a review. Environmental Science and Pollution Research, 28, 4975-4988. https://doi.org/10.1007/s11356-020-11496-3
10. Wang, S., Cao, M., Wang, B., Deng, R., Gao, Y., & Liu, P. (2019). Optimization of growth requirements and scale-up cultivation of freshwater algae Desmodesmus armatus using response surface methodology. Aquaculture Research, 50(11), 3313–3325. https://doi.org/10.1111/are.14290
11. Narayanan, M., Devarayan, K., Verma, M., Selvaraj, M., Ghramh, H. A., & Kandasamy, S. (2024). Assessing the ecological impact of pesticides/herbicides on algal communities: A comprehensive review. Aquatic Toxicology, 268, 106851. https://doi.org/10.1016/j.aquatox.2024.106851