CHANGES IN VEGETATION COVERAGE AS AN INDICATOR OF SOIL CONDITION IN THE CARPATHIAN REGION AND ADJACENT TERRITORIES

Authors

  • D.I. ROBULIAK Чернівецький національний університет імені Юрія Федьковича Author

DOI:

https://doi.org/10.31861/biosystems2025.01.199

Keywords:

vegetation cover, normalized vegetation index, spatial resolution, Kendall's rank correlation method, vegetation period, remote sensing, time series

Abstract

The monitoring of land resources is a critical component of sustainable development, particularly in regions with mixed agro-forestry landscapes that are sensitive to both climatic shifts and anthropogenic pressures. This study presents a comprehensive analysis of long-term vegetation dynamics within the Chernivtsi Raion. The primary objective was to assess spatio-temporal trends in vegetation productivity by utilizing the Normalized Difference Vegetation Index (NDVI) as a key indicator of vegetation health and soil condition. A core component of the methodology was a comparative analysis of results derived from two distinct satellite data sources - the moderate-resolution MODIS sensor and the high-resolution Landsat archive - to understand how sensor characteristics influence the interpretation of land degradation and improvement processes. The analysis was conducted using two independent, long-term satellite data archives. The first dataset comprised 16-day NDVI composites from the MODIS product MOD13Q1 at a 250-meter spatial resolution, covering the period from 2002 to 2024. The second dataset consisted of a harmonized time-series of Landsat 5, 7, 8, and 9 images at a 30-meter resolution for the years 2000 to 2024. For each year, a single representative image for the growing season (April–October) was generated. For MODIS, the annual metric was the mean NDVI of all composites within the season. For the more variable Landsat data, the median NDVI was calculated to create a robust annual composite resistant to outliers such as undetected clouds or sensor artifacts. A non-parametric, per-pixel trend analysis was performed on both time-series using the Kendall's Rank Correlation test to determine the direction and statistical significance of NDVI changes. Based on the Kendall's Tau (τ) coefficient and p-value (α = 0.05), pixels were classified into three categories: "greening" (statistically significant positive trend), "browning" (statistically significant negative trend), and "stable".  The comparative analysis revealed a significant and critical discrepancy between the trends identified by the two sensors. The MODIS data analysis indicated a predominant "browning" trend, with large, spatially contiguous areas of statistically significant NDVI decline observed throughout the study region. This suggested a widespread degradation of vegetation productivity. In stark contrast, the high-resolution Landsat analysis painted the opposite picture, showing a dominant "greening" trend. These positive changes were not uniformly distributed but were spatially concentrated in areas clearly corresponding to agricultural lands, forming a distinct mosaic of improvement. Despite this major conflict regarding the overall seasonal trend, both MODIS and Landsat data consistently showed a positive trend for the maximum July NDVI, indicating that peak summer vegetation productivity has been increasing across the region. It is concluded that the results derived from the Landsat archive are more representative of the actual on-the-ground biophysical changes. The discrepancy is primarily attributed to the difference in spatial resolution; the 30-meter Landsat data successfully captures field-level improvements in crop health or management intensity, whereas the coarse 250-meter MODIS pixels average these positive signals with non-vegetated or stable surfaces, masking the effect. Therefore, the primary conclusion of this study is that the Chernivtsi Raion has experienced a net "greening" over the past two decades, a process largely driven by the intensification of agricultural practices.

References

1. Rouse, J. W., Haas, R. H., Schell, J. A., & Deering, D. W. (1974). Monitoring vegetation systems in the Great Plains with ERTS. In Third Earth Resources Technology Satellite-1 Symposium, Volume I (pp. 309–317). NASA. https://ntrs.nasa.gov/api/citations/19740022592/downloads/19740022592.pdf

2. Yengoh, G. T., Dent, D., Olsson, L., Tengberg, A. E., & Tucker, C. J. (2016). Use of the Normalized Difference Vegetation Index (NDVI) to assess land degradation at multiple scales. Springer. https://doi.org/10.1007/978-3-319-24112-8

3. Zholobak, H. M., Sybirtseva, O. M., Vakoliuk, M. V., & Zakharchuk, Yu. V. (2017). Дистанційний моніторинг стану посівів озимої пшениці впродовж весняно-літньої вегетації 2016 р. за вегетаційними індексами супутника Sentinel-2А (на прикладі Лісостепової зони України) [Remote monitoring of winter wheat crop condition during the 2016 spring-summer growing season using Sentinel-2A satellite vegetation indices (on the example of the Forest-Steppe zone of Ukraine)]. Ukrainskyi Zhurnal Dystantsiinoho Zonduvannia Zemli, (15), 23–30. http://nbuv.gov.ua/UJRN/ukjdzz_2018_15_5

4. Zhu, Z., Piao, S., Myneni, R. B., Huang, M., Zeng, Z., Canadell, J. G., Ciais, P., Sitch, S., Friedlingstein, P., Arneth, A., Cao, C., Cheng, L., Kato, E., Koven, C., Li, Y., Lian, X., Liu, Y., Liu, R., Mao, J., … Zaehle, S. (2016). Greening of the Earth and its drivers. Nature Climate Change, 6(8), 791–795. https://doi.org/10.1038/nclimate3004

5. Tarariko, O., Ilienko, T., Kuchma, T., & Velychko, V. (2017). Long-term prediction of climate change impact on the productivity of grain crops in Ukraine using satellite data. Agricultural Science and Practice, 4(2), 3–13. https://doi.org/10.15407/agrisp4.02.003

6. Ghazaryan, G., Dubovyk, O., Kussul, N., & Menz, G. (2016). Towards an improved environmental understanding of land surface dynamics in Ukraine based on multi-source remote sensing time-series datasets from 1982 to 2013. Remote Sensing, 8(8), 617. https://doi.org/10.3390/rs8080617

7. Boychenko, S., Kuchma, T., & Zabarna, O. (2022). Trends in the environmental conditions, climate change and human health in the Southern region of Ukraine. Sustainability, 14(9), 5664. https://doi.org/10.3390/su14095664

8. Turgut, B., & Güler, S. (2023). Assessment of soil quality index for different NDVI ranges in a watershed. Turkish Journal of Agriculture and Forestry, 47(6), Article 7. https://doi.org/10.55730/1300-011X.3134

9. United Nations Convention to Combat Desertification. (2017). Good practice guidance for SDG Indicator 15.3.1: Proportion of land that is degraded over total land area. UNCCD.

10. Zhukov, O. V., & Hofman, O. P. (2016). Аналіз часових рядів показника NDVI рослинності Великого Чапельського поду за 2010-2015 рр. [Analysis of time series of the NDVI index for the vegetation of the Velykyi Chapelskyi Pod for 2010-2015]. Naukovi Zapysky NaUKMA. Biolohiia Ta Ekolohiia, 184, 40–46. https://www.researchgate.net/publication/311493631_Analiz_casovih_radiv_pokaznika_NDVI_roslinnosti_Velikogo_Capelskogo_podu_za2010-2015_rr

11. Behei, S. S., & Karasevych, N. V. (2021). Вплив основного обробітку ґрунту на його щільність та вологість у посівах жита озимого на схилових землях Передкарпаття [The influence of primary soil cultivation on its density and moisture in winter rye crops on the sloping lands of Precarpathia]. Peredhirne Ta Hirske Zemlerobstvo I Tvarynnytstvo, 70(1), 34–43. https://doi.org/10.32636/01308521.2021-(70)-1-3

12. Kibukevych, Yu. (2021). Порівняльний аналіз показників NDVI для різночасових оптичних та радарних зображень [Comparative analysis of NDVI indicators for multi-temporal optical and radar images]. Systemni Tekhnolohii, 5(136), 14–22. https://doi.org/10.34185/1562-9945-5-136-2021-02

13. Main Department of Statistics in Chernivtsi Oblast. (2024). Posivni ploshchi silskohospodarskykh kultur pid urozhai 2024 roku [Sown areas of agricultural crops for the 2024 harvest]. http://www.cv.ukrstat.gov.ua/

14. State Enterprise "Forests of Ukraine". (2025). Plan vedennia hospodarstva Chernivetskoho nadlisnytstva [Management plan for the Chernivtsi Forestry Enterprise]. https://e-forest.gov.ua/wp-content/uploads/2025/02/plan-lisoupr-2025-na-sajt-DP.pdf

15. State Statistics Service of Ukraine. (n.d.). Indykatory tsilei staloho rozvytku [Indicators of the sustainable development goals]. Retrieved June 24, 2025, from https://sdg.ukrstat.gov.ua/uk/15/

Downloads


Abstract views: 4

Published

2025-07-27

Issue

Section

ГРУНТОЗНАВСТВО