ASSESSMENT OF THE PHYSIOLOGICAL STATE OF HONEY BEE COLONIES OVERWINTERING IN HIVES WITH DIFFERENT THERMOPHYSICAL PROPERTIES

Authors

  • O.V. CHEREVATOV Yuriy Fedkovych Chernivtsi National University Author
  • O.V. PALAMAR Yuriy Fedkovych Chernivtsi National University Author
  • V.V. KARAVAN Yuriy Fedkovych Chernivtsi National University Author
  • L.S. YAZLOVYTSKA Yuriy Fedkovych Chernivtsi National University Author

DOI:

https://doi.org/10.31861/biosystems2025.01.068

Keywords:

Apis mellifera, wooden hives, polyurethane foam hives, colony winter hardiness

Abstract

The article presents the results of a study on the influence of hive material properties (wooden / polyurethane foam) on the development of honey bee colonies during the wintering period under the moderately continental climate of the Pre-Carpathian region (Chernivtsi district, Ukraine). The research was conducted from autumn 2023 to spring 2024 at three apiaries located in different ecotypes. Indicators of colony winter hardiness were examined, including the weak colony percentage, colony mortality, colony strength, and sealed brood area. A comparative analysis of these indicators was performed between colonies kept in wooden hives and polyurethane foam (PUF) hives. It was found that colony strength, the percentage of weakening, and colony mortality showed minor changes during the wintering period, regardless of the hive material. However, in colonies wintered in PUF hives, the relative sealed brood area in spring was higher than in colonies kept in wooden hives. Thus, it was found that during the wintering period, colonies in wooden hives exhibit slower development during minor winter thaws, which enhances their adaptability to local climatic conditions with unstable temperature regimes. The obtained data indicate that the thermophysical properties of the materials from which modern hives are made affect the indicators of honey bee wintering success during critical periods of colony development and largely depend on the climatic and geographical conditions of overwintering.

References

1. Alburaki M & Corona M (2022) Polyurethane honey bee hives provide better winter insulation than wooden hives, Journal of Apicultural Research, 61:2, 190-196, https://doi.org/10.1080/00218839.2021.1999578

2. Barmak, R., Stefanec, M., Hofstadler, D. N., Piotet, L., Schönwetter-Fuchs-Schistek, S., Mondada, F., Schmickl, T., & Mills, R. (2023b). A robotic honeycomb for interaction with a honeybee colony. Science Robotics, 8(76). https://doi.org/10.1126/scirobotics.add7385

3. Branchiccela, B., Castelli, L., Díaz-Cetti, S., Invernizzi, C., Mendoza, Y., Santos, E., Silva, C., Zunino, P., & Antúnez, K. (2021). Can pollen supplementation mitigate the impact of nutritional stress on honey bee colonies? Journal of Apicultural Research, 62(2), 294–302. https://doi.org/10.1080/00218839.2021.1888537

4. Cook, D., Tarlinton, B., McGree, J.M., Blackler, A., & Hauxwell, C. (2022). Temperature Sensing and Honey Bee Colony Strength. J. of Economic Ento., 115, 715-723. https://doi.org/10.1093/jee/toac034

5. Delaplane K S; Van der Steen J; Guzman E. Standard methods for estimating strength parameters of Apis mellifera colonies. In V Dietemann; J D Ellis; P Neumann (Eds) The COLOSS BEEBOOK, Volume I: Standard methods for Apis mellifera research.// Journal of Apicultural Research. – 2013. – 52(1): http://dx.doi.org/10.3896/IBRA.1.52.1.03

6. Dodologlu, A., Dülger, C., & Genc, F. (2004). Colony condition and bee behaviour in honey bees (Apis mellifera) housed in wooden or polystyrene hives and fed ‘bee cake’or syrup. Journal of apicultural research, 43(1), 3-8. https://doi.org/10.1080/00218839.2004.11101100

7. Döke, M.A., Frazier, M., & Grozinger, C.M. (2015) Overwintering honey bees: biology and management. Curr. Opin. Insect Sci., 10:185-19

8. Dynes, T. L., Berry, J. A., Delaplane, K. S., Brosi, B. J., & De Roode, J. C. (2019). Reduced density and visually complex apiaries reduce parasite load and promote honey production and overwintering survival in honey bees. PLoS ONE, 14(5), 1-16. https://doi.org/10.1371/journal.pone.0216286 22.

9. Eouzan, I., Garnery, L., & Pinto, M.A. (2019) Hydroregulation, a key ability for eusocial insects: native Western European honeybees as a case study. PLoS One, 14. https://doi.org/10.1371/journal.pone.0200048

10. Fedoriak, M., Shkrobanets, O., Tymochko, L., Zhuk, A., Fylypchuk, T., Leheta, U., Deli, O., Herasymuk, P., Zarochentseva, O., Moskalyk, H. & Dzhos, V. (2024). Results of monitoring of honey bee colony losses in Ukraine after the winter of the first year of the war (2021-2022). Biological systems, 16 (3), 300-312 https://doi.org/10.31861/biosystems2024.03.300 (In Ukrainian)

11. Genc, F; Kaftanoglu, O (1996) The comparison of the seasonal performances of honeybee (Apis mellifera L.) colonies wintered in wooden and styrofoam hives in Erzurum conditions. College of Agriculture, Atatürk üniversity, Erzurum, Yearbook 27(3): 398–410.

12. Ghosh, S., Meyer-Rochow, V., Jung, C. (2021). Honey bees and their brood: a potentially valuable resource of food, worthy of greater appreciation and scientific attention. J. of Eco. and Environment. 45. https://doi.org/10.1186/s41610-021-00212-y

13. Hristov, P., Shumkova, R., & Palova, N. (2020) Factors associated with honey bee colony losses: a mini-review. Vet. Sci., 7:166 https://doi.org/10.3390/vetsci7040166

14. Jarimi, H., Tapia-Brito, E., & Riffat, S. (2020) A review on thermoregulation techniques in honey bees' (Apis mellifera) beehive microclimate and its similarities to the heating and cooling management in buildings. Future Cities Environ., 6:7

15. Lang, S., Simone-Finstrom, M., & Healy, K. (2023). Effects of honey bee queen exposure to deformed wing virus-A on queen and juvenile infection and colony strength metrics. J. of Apicult. Research, 63, 233 - 244 https://doi.org/10.1080/00218839.2023.2284034

16. Noor-Ul-Ane, M., & Jung, C. (2021). Supercooling Points (SCPs) of Social Hymenopterans, Apis mellifera (Hymenoptera: Apidae) and Vespa velutina (Hymenoptera: Vespidae). Journal of Apiculture, 36(2), 71–76. https://doi.org/10.17519/apiculture.2021.06.36.2.71

17. Norrström, N., Niklasson, M., & Leidenberger, S. (2021). Winter weight loss of different subspecies of honey bee Apis mellifera colonies (Linnaeus, 1758) in southwestern Sweden. PLoS ONE, 16(10), 1-23. https://doi.org/10.1371/journal.pone.0258398

18. Petre, S. G., Isopescu, D. N., Pruteanu, M., & Cojocaru, A. (2022). Effect of exposure to environmental cycling on the thermal conductivity of expanded polystyrene. Materials, 15(19), 6921. https://doi.org/10.3390/ma15196921

19. Requier, F., Garnery, L., &∙ Kohl, P.L. (2019) The conservation of native honey bees is crucial. Trends Ecol. Evol., 34:789-798

20. Requier, F., Pérez-Méndez, N., & Andersson, G.K.S. (2023) Bee and non-bee pollinator importance for local food security. Trends Ecol. Evol., 38:196-205

21. Sammataro D, Weiss M.. Comparison of productivity of colonies of honey bees, Apis mellifera, supplemented with sucrose or high fructose corn syrup. Journal of Insect Science 2013. –13:19.

22. Schmolke, A., Abi‐Akar, F., Roy, C., Galic, N., & Hinarejos, S. (2020). Simulating honey bee large‐scale colony feeding studies using the BEEHAVE model—Part I: Model validation. Environmental Toxicology and Chemistry, 39(11), 2269-2285. https://doi.org/10.1002/etc.4839

23. Simpson, A., Rattigan, I. G., Kalavsky, E., & Parr, G. (2020). Thermal conductivity and conditioning of grey expanded polystyrene foams. Cellular Polymers, 39(6), 238-262. https://doi.org/10.1177/0262489320934263

24. Stabentheiner, A., Kovac, H., Mandl, M., & Käfer, H. (2021). Coping with the cold and fighting the heat: thermal homeostasis of a superorganism, the honeybee colony. Journal of Comparative Physiology A, 207(3), 337–351. https://doi.org/10.1007/s00359-021-01464-8

25. Steinhauer, N., vanEngelsdorp, D., & Saegerman, C. (2020). Prioritizing changes in management practices associated with reduced winter honey bee colony losses for US beekeepers. The Science of the Total Environment, 753, 141629. https://doi.org/10.1016/j.scitotenv.2020.141629

26. Stojanov, D. P., Dimitrov, L., Danihlík, J., Uzunov, A., Golubovski, M., Andonov, S., & Brodschneider, R. (2021). Direct Economic Impact assessment of winter honeybee colony losses in three European countries. Agriculture, 11(5), 398. https://doi.org/10.3390/agriculture11050398

27. van Dooremalen, C., & van Langevelde, F. (2021) Can colony size of honeybees (Apis mellifera) be used as a predictor for colony losses due to Varroa destructor during winter? Agriculture, 11:529 https://doi.org/10.3390/agriculture11060529

28. Yazlovytska, L. S., & Panchuk, I. I. (2024). Chapter 3. Nutrition of Honey Bees. In Honey Bee (pp. 88-135). (In Ukrainian)

29. Yu, Z. T., Xu, X., Fan, L. W., Hu, Y. C., & Cen, K. F. (2011). Experimental measurements of thermal conductivity of wood species in China: effects of density, temperature, and moisture content. Forest Products Journal, 61(2), 130-135. https://www.cabidigitallibrary.org/doi/full/10.5555/20113339528

30. Zhang, H., Fang, W. Z., Li, Y. M., & Tao, W. Q. (2017). Experimental study of the thermal conductivity of polyurethane foams. Applied Thermal Engineering, 115, 528-538. https://doi.org/10.1016/j.applthermaleng.2016.12.057

31. Zhelyazkova, I., & Lazarov, S. (2021). Food consumption and winter mortality in bee colonies wintering in hives made from different materials with lattice and solid bottom. Agricultural Science and Technology, 13(3), 272-275. https://doi.org/10.15547/ast.2021.03.043

32. Zhuk, A., Zarochentseva, O., Tymochko, L., Fylypchuk, T., & Fedoriak, M. (2024). Chapter 5. Monitoring of Winter Losses of Honey Bee Colonies in Ukraine. In Honey Bee, 163-200. (In Ukrainian)

Downloads


Abstract views: 3

Published

2025-07-27

Issue

Section

БІОХІМІЯ, БІОТЕХНОЛОГІЯ, МОЛЕКУЛЯРНА ГЕНЕТИКА