LONG-TERM EFFECT OF N-(PHOSPHONOMETHYL)GLYCINE ON THE DEVELOPMENT OF RHODOTORULA SPP.

Authors

  • A.V. TYKHENKA Yuriy Fedkovych Chernivtsi National University Author
  • L.M. VASINA Yuriy Fedkovych Chernivtsi National University Author

DOI:

https://doi.org/10.31861/biosystems2025.01.052

Keywords:

N-(phosphonomethyl)glycine, Rhodotorula spp., fungitoxicity, dose dependence

Abstract

The control of invasive plant species in agroecosystems is mostly associated with the use of synthetic herbicides due to their high effectiveness. One of the most commonly used is glyphosate [N-(phosphonomethyl)glycine]. It is a non-selective systemic herbicide with a broad spectrum of activity used to combat annual and perennial plants. This compound acts by inhibiting the enzyme 5-enolpyruvylshikimate-3-phosphate synthase, which plays a key role in the shikimate pathway and is responsible for the synthesis of an intermediate product in the biosynthesis of aromatic amino acids. N-(phosphonomethyl)glycine demonstrates an ambiguous effect on soil microbial communities. Some concentrations of the herbicide can stimulate microbial activity, increasing the diversity and complexity of the network. In other cases, the herbicide has a negative effect on the survival and structure of soil microorganisms. The effect of the herbicide on microscopic fungi remains little known, in particular on representatives of the genus Rhodotorula, which are characterized by a wide distribution in various ecological niches, high metabolic activity (synthesis of pigments, enzymes, exopolysaccharides, ergosterol), the ability to exist in microbial consortia, and adsorption capacity.

The study investigated the effect of the herbicide N-(phosphonomethyl)glycine on the physiological and biochemical parameters of two yeast species: R. rubra and R. minuta. During the study, changes in growth characteristics under prolonged herbicide exposure, carotenoid content, and the level of thiobarbituric acid-reactive substances were determined.

It was found that N-(phosphonomethyl)glycine at the highest of the tested concentrations had a dose- and time-dependent inhibitory effect on the development of carotenoid-producing yeasts, inducing oxidative stress, which was accompanied by the accumulation of lipid peroxidation products and changes in the level of major carotenoids. At the same time, a decrease in the culture density of both studied species and a reduction in the number of planktonic colony-forming units were observed. R. minuta exhibited greater sensitivity to the pollutant, as confirmed by more drastic changes in the studied parameters – a significant reduction in the number of viable cells, a multiple increase in the level of end products of lipid peroxidation, and a decrease in carotenoid levels.

References

1. Ruuskanen, S., Fuchs, B., Nissinen, R., Puigbò, P., Rainio, M., Saikkonen, K., & Helander, M. (2022). Ecosystem consequences of herbicides: the role of microbiome. Trends in Ecology & Evolution. https://doi.org/10.1016/j.tree.2022.09.009

2. Van Bruggen, A. H. C., He, M. M., Shin, K., Mai, V., Jeong, K. C., Finckh, M. R., & Morris, J. G. (2018). Environmental and health effects of the herbicide glyphosate. Science of The Total Environment, 616-617, 255–268. https://doi.org/10.1016/j.scitotenv.2017.10.309

3. Cordeiro, R. d. A. (2019). Pocket guide to mycological diagnosis. Taylor & Francis Group.

4. Ruffolo, F., Dinhof, T., Murray, L., Zangelmi, E., Chin, J., Pallitsch, K., & Peracchi, A. (2023). The microbial degradation of natural and anthropogenic phosphonates. Molecules, 28(19), 6863. https://doi.org/10.3390/molecules28196863

5. Feng, D., Soric, A., & Boutin, O. (2020). Treatment technologies and degradation pathways of glyphosate: A critical review. Science of the Total Environment, 742, 140559. https://doi.org/10.1016/j.scitotenv.2020.140559

6. Mohy-Ud-Din, W., Bashir, S., Akhtar, M. J., Asghar, H. M. N., Ghafoor, U., Hussain, M. M., Niazi, N. K., Chen, F., & Ali, Q. (2023). Glyphosate in the environment: Interactions and fate in complex soil and water settings, and (phyto) remediation strategies. International Journal of Phytoremediation, 1–22. https://doi.org/10.1080/15226514.2023.2282720

7. Процеси ліпопероксидації у клітинах Chlorobium limicola IMB K-8 за впливу купрум (ІІ) сульфату / Т. Б. Сегін, С. О. Гнатуш, М. Б. Горішний // Вісник Дніпропетровського університету. Серія : Біологія. Екологія. - 2016. - Вип. 24(1). - С. 72-77. - Режим доступу: http://nbuv.gov.ua/UJRN/vdube_2016_24%281%29__10

8. Waterborg, J. H., & Matthews, H. R. (1984). The lowry method for protein quantitation. Methods in molecular biology (Clifton, N.J.), 1, 1–3. https://doi.org/10.1385/0-89603-062-8:1

9. Biehler, E., Mayer, F., Hoffmann, L., Krause, E., & Bohn, T. (2010). Comparison of 3 Spectrophotometric Methods for Carotenoid Determination in Frequently Consumed Fruits and Vegetables. Journal of Food Science, 75(1), C55–C61. https://doi.org/10.1111/j.1750-3841.2009.01417.x

10. Kourtaki, K., Buchner, D., Martin, P. R., Thompson, K., & Haderlein, S. B. (2025). Influence of organophosphonates as alternative P-sources on bacterial transformation of glyphosate. Environmental Pollution, 125872. https://doi.org/10.1016/j.envpol.2025.125872

11. Dayan, F. E., Owens, D. K., Corniani, N., Silva, F. M. L., Watson, S. B., Howell, J., & Shaner, D. L. (2015). Biochemical markers and enzyme assays for herbicide mode of action and resistance studies. Weed Science, 63(SP1), 23–63. https://doi.org/10.1614/ws-d-13-00063.1

12. Kőmíves, T., & Schröder, P. (2016). On glyphosate. Ecocycles, 2(2). https://doi.org/10.19040/ecocycles.v2i2.60

13. Marcelino, G., Machate, D. J., Freitas, K. d. C., Hiane, P. A., Maldonade, I. R., Pott, A., Asato, M. A., Candido, C. J., & Guimarães, R. d. C. A. (2020). β-Carotene: Preventive Role for Type 2 Diabetes Mellitus and Obesity: A Review. Molecules, 25(24), 5803. https://doi.org/10.3390/molecules25245803

14. Hashem, M., Alamri, S. A., Al-Zomyh, S. S. A. A., & Alrumman, S. A. (2018). Biodegradation and detoxification of aliphatic and aromatic hydrocarbons by new yeast strains. Ecotoxicology and Environmental Safety, 151, 28–34. https://doi.org/10.1016/j.ecoenv.2017.12.064

15. Cheng, Z., Chi, M., Li, G., Chen, H., Sui, Y., Sun, H., Wisniewski, M., Liu, Y., & Liu, J. (2016). Heat shock improves stress tolerance and biocontrol performance of Rhodotorula mucilaginosa. Biological Control, 95, 49–56. https://doi.org/10.1016/j.biocontrol.2016.01.001

16. Gong, G., Liu, L., Zhang, X., & Tan, T. (2018). Multi-omics metabolism analysis on irradiation-induced oxidative stress to Rhodotorula glutinis. Applied Microbiology and Biotechnology, 103(1), 361–374. https://doi.org/10.1007/s00253-018-9448-9 Ruuskanen, S., Fuchs, B., Nissinen, R., Puigbò, P., Rainio, M., Saikkonen, K., & Helander, M. (2022). Ecosystem consequences of herbicides: the role of microbiome. Trends in Ecology & Evolution. https://doi.org/10.1016/j.tree.2022.09.009

17. Van Bruggen, A. H. C., He, M. M., Shin, K., Mai, V., Jeong, K. C., Finckh, M. R., & Morris, J. G. (2018). Environmental and health effects of the herbicide glyphosate. Science of The Total Environment, 616-617, 255–268. https://doi.org/10.1016/j.scitotenv.2017.10.309

18. Cordeiro, R. d. A. (2019). Pocket guide to mycological diagnosis. Taylor & Francis Group.

19. Ruffolo, F., Dinhof, T., Murray, L., Zangelmi, E., Chin, J., Pallitsch, K., & Peracchi, A. (2023). The microbial degradation of natural and anthropogenic phosphonates. Molecules, 28(19), 6863. https://doi.org/10.3390/molecules28196863

20. Feng, D., Soric, A., & Boutin, O. (2020). Treatment technologies and degradation pathways of glyphosate: A critical review. Science of the Total Environment, 742, 140559. https://doi.org/10.1016/j.scitotenv.2020.140559

21. Mohy-Ud-Din, W., Bashir, S., Akhtar, M. J., Asghar, H. M. N., Ghafoor, U., Hussain, M. M., Niazi, N. K., Chen, F., & Ali, Q. (2023). Glyphosate in the environment: Interactions and fate in complex soil and water settings, and (phyto) remediation strategies. International Journal of Phytoremediation, 1–22. https://doi.org/10.1080/15226514.2023.2282720

22. Процеси ліпопероксидації у клітинах Chlorobium limicola IMB K-8 за впливу купрум (ІІ) сульфату / Т. Б. Сегін, С. О. Гнатуш, М. Б. Горішний // Вісник Дніпропетровського університету. Серія : Біологія. Екологія. - 2016. - Вип. 24(1). - С. 72-77.

23. Waterborg, J. H., & Matthews, H. R. (1984). The lowry method for protein quantitation. Methods in molecular biology (Clifton, N.J.), 1, 1–3. https://doi.org/10.1385/0-89603-062-8:1

24. Biehler, E., Mayer, F., Hoffmann, L., Krause, E., & Bohn, T. (2010). Comparison of 3 Spectrophotometric Methods for Carotenoid Determination in Frequently Consumed Fruits and Vegetables. Journal of Food Science, 75(1), C55–C61. https://doi.org/10.1111/j.1750-3841.2009.01417.x

25. Kourtaki, K., Buchner, D., Martin, P. R., Thompson, K., & Haderlein, S. B. (2025). Influence of organophosphonates as alternative P-sources on bacterial transformation of glyphosate. Environmental Pollution, 125872. https://doi.org/10.1016/j.envpol.2025.125872

26. Dayan, F. E., Owens, D. K., Corniani, N., Silva, F. M. L., Watson, S. B., Howell, J., & Shaner, D. L. (2015). Biochemical markers and enzyme assays for herbicide mode of action and resistance studies. Weed Science, 63(SP1), 23–63. https://doi.org/10.1614/ws-d-13-00063.1

27. Kőmíves, T., & Schröder, P. (2016). On glyphosate. Ecocycles, 2(2). https://doi.org/10.19040/ecocycles.v2i2.60

28. Marcelino, G., Machate, D. J., Freitas, K. d. C., Hiane, P. A., Maldonade, I. R., Pott, A., Asato, M. A., Candido, C. J., & Guimarães, R. d. C. A. (2020). β-Carotene: Preventive Role for Type 2 Diabetes Mellitus and Obesity: A Review. Molecules, 25(24), 5803. https://doi.org/10.3390/molecules25245803

29. Hashem, M., Alamri, S. A., Al-Zomyh, S. S. A. A., & Alrumman, S. A. (2018). Biodegradation and detoxification of aliphatic and aromatic hydrocarbons by new yeast strains. Ecotoxicology and Environmental Safety, 151, 28–34. https://doi.org/10.1016/j.ecoenv.2017.12.064

30. Cheng, Z., Chi, M., Li, G., Chen, H., Sui, Y., Sun, H., Wisniewski, M., Liu, Y., & Liu, J. (2016). Heat shock improves stress tolerance and biocontrol performance of Rhodotorula mucilaginosa. Biological Control, 95, 49–56. https://doi.org/10.1016/j.biocontrol.2016.01.001

31. Gong, G., Liu, L., Zhang, X., & Tan, T. (2018). Multi-omics metabolism analysis on irradiation-induced oxidative stress to Rhodotorula glutinis. Applied Microbiology and Biotechnology, 103(1), 361–374. https://doi.org/10.1007/s00253-018-9448-9

Downloads


Abstract views: 3

Published

2025-07-27

Issue

Section

БІОХІМІЯ, БІОТЕХНОЛОГІЯ, МОЛЕКУЛЯРНА ГЕНЕТИКА