GENETIC DIVERSITY OF INVASIVE PLANTS OF REYNOUTRIA GENUS BASED ON ISSR MARKERS
DOI:
https://doi.org/10.31861/biosystems2025.01.022Keywords:
biodiversity, invasive species, interspecific hybridization, molecular markersAbstract
Members of the genus Reynoutria Houtt. are recognized as some of the most invasive plant species worldwide. In Europe, two species, R. japonica Houtt. and R. sachalinensis (F.Schmidt) Nakai, as well as their hybrid R. × bohemica Chrtek & Chrtková, are widespread. Despite the spread of a single clonal lineage of R. japonica with male sterility across the European continent, hybridization with R. sachalinensis and the emergence of forms with different ploidy levels contribute to increased genetic diversity, promoting further invasion. To date, studies of the genetic structure of these species in populations from the territory of Ukraine have not been conducted. Therefore, this study aimed to investigate the genetic polymorphism and hybridization of Ukrainian accessions of the genus Reynoutria. For comparison with Ukrainian samples, specimens from Romania and Germany were also included in the study. ISSR markers were chosen for the study due to their universality and ability to assess polymorphism across the genome.
Based on the ISSR markers, using phylogenetic analysis and the principal coordinates method, higher genetic distance values were observed between R. sachalinensis samples compared to the distances between R. japonica samples. For samples morphologically identified as the hybrid species R. × bohemica, ISSR analysis did not reveal the presence of genetic material from one of the parental species, R. sachalinensis. However, these samples showed close relatedness to each other, both genetically and morphologically. In more than half of the samples morphologically identified as R. japonica, traces of genetic material from R. sachalinensis were found in their genomes, ranging from 8.3% to 57.6%, indicating a significant prevalence of introgressive hybridization between these invasive plant species.
References
1. Bailey, J. P., & Stace, C. A. (1992). Chromosome number, morphology, pairing, and DNA values of species and hybrids in the genus Fallopia (Polygonaceae). Plant Syst. Evol., 180(1), 29-52. https://doi.org/10.1007/BF00940396
2. Bailey, J. P., Bímová, K., & Mandák, B. (2009). Asexual spread versus sexual reproduction and evolution in Japanese Knotweed sl sets the stage for the “Battle of the Clones”. Biol. Invasions, 11, 1189-1203. https://doi.org/10.1007/s10530-008-9381-4
3. Bailey, J., & Wisskirchen, R. (2004). The distribution and origins of Faúopia × bohemica (Polygonaceae) in Europe. Nord. J. Bot., 24(2), 173-199. https://doi.org/10.1111/j.1756-1051.2004.tb00832
4. Desjardins, S. D., Pashley, C. H., Bailey, J. P. (2023). A taxonomic, cytological and genetic survey of Japanese knotweed s.l. in New Zealand indicates multiple secondary introductions from Europe and a direct introduction from Japan. NZ. J. Bot. 61, 49–66. https://doi.org/10.1080/0028825X.2023.2162166
5. Earl, D. A., & VonHoldt, B. M. (2012). STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation genetics resources, 4, 359-361. https://doi.org/10.1007/s12686-011-9548-7
6. Henderson, L., & Wilson, J. R. (2017). Changes in the composition and distribution of alien plants in South Africa: An update from the Southern African Plant Invaders Atlas. Bothalia-African Biodiversity & Conservation, 47(2), 1-26. https://doi.org/10.4102/abc.v47i2.2172
7. Hodalová, I., Mártonfiová, L., Skokanová, K., Španiel, S., & Meredá Jr, P. (2022). Fallopia × moravica (Polygonaceae), a new hybrid between Fallopia compacta and F. sachalinensis. Phytotaxa, 572(2), 123-143. https://doi.org/10.11646/phytotaxa.572.2.1
8. Hollingsworth, M. L., & Bailey, J. P. (2000). Evidence for massive clonal growth in the invasive weed Fallopia japonica (Japanese Knotweed). Bot. J. Linn. Soc., 133(4), 463-472. https://doi.org/10.1111/j.1095-8339.2000.tb01589.x
9. Ishchenko, O. O., Mel’nyk, V. M., Parnikoza, І. Y., Budzhak, V. V., Panchuk, І. І., Kunakh, V. A., & Volkov, R. A. (2020). Molecular organization of 5S ribosomal DNA and taxonomic status of Avenella flexuosa (L.) Drejer (Poaceae). Cytology and Genetics, 54, 505-513. https://doi.org/10.3103/S0095452720060055
10. Ivanovych, Y. I., Udovychenko, K. M., Bublyk, M. O., & Volkov, R. A. (2017). ISSR-PCR fingerprinting of Ukrainian sweet cherry (Prunus avium L.) cultivars. Cytol. Genet., 51, 40-47. https://doi.org/10.3103/s0095452717010066
11. Ivanovych, Y., & Volkov, R. (2018). Genetic relatedness of sweet cherry (Prunus avium L.) cultivars from Ukraine determined by microsatellite markers. The Journal of Horticultural Science and Biotechnology, 93(1), 64-72. https://doi.org/10.1080/14620316.2017.1342568
12. Jugieau, E., Talmot, V., Staentzel, C., Noir, S., & Hardion, L. (2024). A knot of hybrids: Differentiating Asian knotweeds in North‐Eastern France using genetic, cytological, and morphological data. J. Syst. Evol., 62(6), 1218-1226. https://doi.org/10.1111/jse.13075
13. Kadlecová, M., Vojík, M., Vacula, J., & Berchová Bímová, K. (2024). Grab to fill the gap: key factors influencing Reynoutria japonica germination and seedling establishment in the secondary distribution range. Plant Ecology, 225(8), 863-873. https://doi.org/10.1007/s11258-024-01438-1
14. Lucardi, R. D., Wallace, L. E., & Ervin, G. N. (2020). Patterns of genetic diversity in highly invasive species: Cogongrass (Imperata cylindrica) expansion in the invaded range of the southern United States (US). Plants, 9(4), 423. https://doi.org/10.3390/plants9040423
15. Mereďa Jr, P., Koláriková, Z., & Hodálová, I. (2019). Cytological and morphological variation of Fallopia sect. Reynoutria taxa (Polygonaceae) in the Krivánska Malá Fatra Mountains (Slovakia). Biologia, 74(3), 215-236. https://doi.org/10.2478/s11756-018-00168-w
16. Miroshnyk, N., Grabovska, T., & Roubík, H. (2025). The spread of the invasive species Reynoutria japonica Houtt. will both expand and contract with climate change: results of climate modelling for 14 European countries. Pest Manag. Sci. https://doi.org/10.1002/ps.8732
17. Nei M, Li W (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76(10): 5269-5273. https://doi.org/10.1073/pnas.76.10.5269
18. Olshanskyi, I. G., & Antonenko, S. I. (2023). A new nomenclatural combination in Reynoutria (Polygonaceae). Ukr. Bot. J., 80(2), 133-135. https://doi.org/10.15407/ukrbotj80.02.133
19. Panchuk, I. I., & Volkov, R. A. (2007). A practical course in molecular genetics. [Praktykum z molekuliarnoi henetyky] Chernivtsi: Ruta. 120 p. [In Ukrainian]
20. Perrier, X., Flori, A., Bonnot, F. (2003) Data analysis methods in genetic diversity of cultivated tropical plants (pp. 43-76). Enfield: Science Publishers.
21. Perrier, X., Jacquemoud-Collet, J. P. (2006). DARwin software https://darwin.cirad.fr/.
22. Porebski, S., Bailey, L. G., & Baum, B. R. (1997). Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant molecular biology reporter, 15, 8-15. https://doi.org/10.1007/BF02772108
23. POWO Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. 2025; Published on the Internet. http://www.plantsoftheworldonline.org/ Retrieved 3 May 2025.
24. Pritchard, J. K, Stephens, M, Donnelly, P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2): 945-959. https://doi.org/10.1093/genetics/155.2.945
25. Reynoutria Houtt. in GBIF Secretariat. GBIF Backbone Taxonomy. Checklist dataset. accessed via GBIF org on 2025-05-03. https://doi.org/10.15468/39omei
26. Roshka, N, Tynkevich, Y. O., & Volkov, R. (2024). Use of ISSR markers in assessment of genetic diversity of Ukrainian representatives of the genus Heracleum. Scientific Herald of Chernivtsi University. Biology (Biological Systems), 16(3), 266-273. [In Ukrainian]. https://doi.org/10.31861/biosystems2024.03.266
27. Rusak, O. O., Petrashchuk, V. I., Panchuk, I. I., & Volkov, R. A. (2016). Molecular organization of 5S rDNA in two Ukrainian populations of Sycamore (Acer pseudoplatanus). Bull. Vavilov Soc. Genet. Breed. Ukr, 14(2), 216-220. [In Ukrainian]. https://doi.org/10.7124/visnyk.utgis.14.2.691
28. Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular biology and evolution, 4(4), 406-425. https://doi.org/10.1093/oxfordjournals.molbev.a040454
29. Shevera, M. V. (2017). Reynoutria × bohemica (Polygonaceae), a potentially invasive species of the Ukrainian flora. Ukr. Bot. J., 74(6), 548-555.
30. Tynkevich, Y. O., Bushyla, K. D., & Volkov, R. A. (2020). Organization of the 5S rDNA intergenic spacer of Quercus rubra L. and its relationship to the Ukrainian Quercus species. Factors Experimental Evol. Organisms, 26, 125-131. [In Ukrainian] https://doi.org/10.7124/FEEO.v26.1254
31. Tynkevich, Y. O., Yakobyshen, D. V., Cherkazianova, A. S., Shelyfist, A. Y., & Volkov, R. A. (2024). Intragenomic polymorphism of the ITS1-5.8S-ITS2 region in invasive species of the genus Reynoutria. Cytol. Genet., 58(6), 536-546. https://doi.org/10.3103/S0095452724060112
32. Tynkevich, Y. O., Cherkazianova, A. S., Chorney, I. I., Panchuk I. I., & Volkov, R. A. (2025). Genetic polymorphism of invasive species of knotweed (Reynoutria) assessed by the matK and rpl32-trnL (UAG) regions of chloroplastic DNA. Cytol. Genet., 59(3), 259-269. https://doi.org10.3103/S0095452725030089
33. Tynkevich, Y. O., Ivanovych, Y. I., Roshka, N. M., Tokaryuk, A. I., Blyzniuk, K. G., Shelyfist, A. Y., & Volkov, R. A. (2025). Genetic diversity of Ukrainian populations of invasive species of the genus Galinsoga assessed by ISSR-markers. Cytol Genet, 59(1), 11-23 https://doi.org/10.3103/S0095452725010141
34. WFO World Flora Online. 2023. Available from: http://www.worldfloraonline.org/ (accessed 5 May 2025).
35. Zhang, L., van Riemsdijk, I., Liu, M., Liao, Z., Cavé‐Radet, A., Bi, J. et al. (2024). Biogeography of a Global Plant Invader: From the Evolutionary History to Future Distributions. Glob. Change Biol., 30(12), e17622. https://doi.org/10.1111/gcb.17622