IDENTIFICATION AND BIOINFORMATICS ANALYSIS OF sHSP GENES ORYZA SATIVA

Authors

  • L.V. KOZUB Department of molecular genetics and biotechnology, Yuriy Fedkovych Chernivtsi National University Author
  • I.I. PANCHUK Department of molecular genetics and biotechnology, Yuriy Fedkovych Chernivtsi National University Author

DOI:

https://doi.org/10.31861/biosystems2024.03.280

Keywords:

abiotic stress, bioinformatic analysis, genetic polymorphism, molecular genomics, molecular evolution, multigene family, α-crystallin domain, sHSP, O.sativa

Abstract

Plants have a sessile lifestyle and are constantly exposed to adverse environmental factors such as drought, high temperature, and high soil salinity, which significantly reduce their yield. To counteract these conditions, plants activate defense mechanisms, one of the key elements of which are small heat shock proteins (sHSP). These proteins act as molecular chaperones, protecting cells from damage under stress conditions. Despite their important role, the mechanisms of action of sHSP in rice (Oryza sativa), one of the world's main food crops, remain poorly understood.

In this study, bioinformatics methods were used to identify, classify, and analyze sHSP genes in the O. sativa genome. Amino acid sequences were aligned using the G-INS-I method on the MAFFT server. Phylogenetic analysis was performed using the Maximum likelihood method with the PhyML plugin for Geneious Prime 2023.2.1. Statistical support for branches was calculated using the aLRT Chi2 method. Exon-intron structure was generated on the Gene Structure Display Server 2.0.

35 sHSP genes were identified in the O. sativa genome, and their amino acid sequences were classified into eight structural classes. The analysis showed significant variability of the N- and C-terminal regions of sHSP with the conservation of the α-crystalline domain. Plastidic, mitochondrial, endoplasmic and peroxisomal proteins form separate branches on the phylogenetic tree, indicating their evolutionary divergence. A protein that did not fall into known classes was also identified. The construction of the exon-intron structure confirmed the presence of introns in some genes, which may indicate their role in regulating the response to heat stress.

The obtained results allow us to better understand the role of sHSP in the mechanisms of plant resistance to abiotic stresses and provide a basis for further research aimed at creating high-yielding rice varieties.

References

1. Anisimova, M., & Gascuel, O. (2006). Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Systematic Biology, 55(4), 539–552. https://doi.org/10.1080/1063515060075545

2. Boratyn, G. M., Camacho, C., Cooper, P. S., Coulouris, G., Fong, A., Ma, N., Madden, T. L., Matten, W. T., McGinnis, S. D., Merezhuk, Y., Raytselis, Y., Sayers, E. W., Tao, T., Ye, J., & Zaretskaya, I. (2013). BLAST: a more efficient report with usability improvements. Nucleic Acids Research, 41(W1),W29–W33. ttps://doi.org/10.1093/nar/gkt282

3. Buzduga, I. M., Salamon, I., Volkov, R. A., & Pаnchuk, I. I. (2022). Rapid accumulation of cadmium and antioxidative response in tobacco leaves. The Open Agriculture Journal, 16(1). https://doi.org/10.2174/18743315-v16-e2206271

4. Buzduga, I.M., Volkov, R.A., & Panchuk I.I. (2014). Heat stress affects lipid peroxidation and activity of ascorbate peroxidase in Nicotaina tabacum [Vplyv teplovoho stresu na peroksidne okyslennia lipidiv ta activnist askorbat peroxidasy u Nicotiana tabacum]. Phisiologia Rastenij i Genetika. 46 (2), 151-157. [In Ukrainian].

5. Chandel, G., Dubey, M., & Meena, R. (2012). Differential expression of heat shock proteins and heat stress transcription factor genes in rice exposed to different levels of heat stress. Journal of Plant Biochemistry and Biotechnology, 22(3), 277–285. https://doi.org/10.1007/s13562-012-0156-8

6. Chen, X., Lin, S., Liu, Q., Huang, J., Zhang, W., Lin, J., Wang, Y., Ke, Y., & He, H. (2014). Expression and interaction of small heat shock proteins (sHsps) in rice in response to heat stress. Biochimica Et Biophysica Acta (BBA) - Proteins and Proteomics, 1844(4),818–828. https://doi.org/10.1016/j.bbapap.2014.02.010

7. Doliba, I. M., Volkov, R. A., & Panchuk, I. I. (2011). Activity of catalase and ascorbate peroxidase in Cat2 knock-out mutant of Arabidopsis thaliana up-on cadmium stress. Visn. Ukr. Tov. Genet. Sel, 9(2), 200-209.

8. Guindon, S., & Gascuel, O. (2003). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology, 52(5), 696–704. https://doi.org/10.1080/10635150390235520

9. Hagymasi, A. T., Dempsey, J. P., & Srivastava, P. K. (2022). Heat‐Shock proteins. Current Protocols, 2(11). https://doi.org/10.1002/cpz1.592

10. Haslbeck, M., & Vierling, E. (2015). A first line of stress defense: small heat shock proteins and their function in protein homeostasis. Journal of Molecular Biology, 427(7), 1537–1548. https://doi.org/10.1016/j.jmb.2015.02.002

11. Hassan, M. U., Chattha, M. U., Khan, I., Chattha, M. B., Barbanti, L., Aamer, M., Iqbal, M. M., Nawaz, M., Mahmood, A., Ali, A., & Aslam, M. T. (2020). Heat stress in cultivated plants: nature, impact, mechanismms, and mitigation strategies - a review. Plant Biosystems, 155(2), 211–234. https://doi.org/10.1080/11263504.2020.1727987

12. Hibshman, J. D., Carra, S., & Goldstein, B. (2023). Tardigrade small heat shock proteins can limit desiccation-induced protein aggregation. Communications Biology, 6(1). https://doi.org/10.1038/s42003-023-04512-y

13. Hu, B., Jin, J., Guo, A., Zhang, H., Luo, J., & Gao, G. (2014). GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics, 31(8), 1296–1297. https://doi.org/10.1093/bioinformatics/btu817

14. Ji, X., Yu, Y., Ni, P., Zhang, G., & Guo, D. (2019). Genome-wide identification of small heat-shock protein (HSP20) gene family in grape and expression profile during berry development. BMC Plant Biology, 19(1). https://doi.org/10.1186/s12870-019-2031-4

15. Katoh, K., Rozewicki, J., & Yamada, K. D. (2017). MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics, 20(4), 1160–1166. https://doi.org/10.1093/bib/bbx108

16. Khan, S., Jabeen, R., Deeba, F., Waheed, U., Khanum, P., & Iqbal, N. (2021). Heat shock proteins: classification, functions and expressions in plants during environmental stresses. Journal of Bioresource Management, 8(2), 9. https://doi.org/10.35691/JBM.1202.0183.

17. Lee, B., Won, S., Lee, H., Miyao, M., Chung, W., Kim, I., & Jo, J. (2000). Expression of the chloroplast-localized small heat shock protein by oxidative stress in rice. Gene, 245(2), 283–290. https://doi.org/10.1016/s0378-1119(00)00043-3

18. Letunic, I., & Bork, P. (2021). Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Research, 49(W1), W293–W296. https://doi.org/10.1093/nar/gkab301.

19. Panchuk, I. I., Volkov, R. A., & Schöffl, F. (2002). Heat stress-and heat shock transcription factor-dependent expression and activity of ascorbate peroxidase in Arabidopsis. Plant physiology, 129(2), 838-853. https://doi.org/10.1104/pp.001362

20. Poudel, P. B., & Poudel, M. R. (2020). Heat stress effects and tolerance in wheat: A review. J. Biol. Today’s World, 9(3), 1-6. https://doi.org/10.35248/2322-3308.20.09.217

21. Pyrizhok, R.Yu., Volkov, R.A., & Panchuk I.I. (2009). Peroxidase activity in maize seedlings upon heat stress [Actyvnist peroxidasy prorostkiv kukurudzy v umovakh teplovoho stresu] Phisiologia i biochimia kulturnykh rastenij. 41 (1): 44-49. [In Ukrainian].

22. Reddy, P. S., Chakradhar, T., Reddy, R. A., Nitnavare, R. B., Mahanty, S., & Reddy, M. K. (2016). Role of heat shock proteins in improving heat stress tolerance in crop plants. In Heat shock proteins, 283–307. https://doi.org/10.1007/978-3-319-46340-7_14

23. Rusnak, T.O., Doliba, I.M., Volkov, R.A., & Panchuk I.I. (2013). Guaiacol peroxidase activity in Cat2 knock-out mutant of Arabidopsis thaliana upon heat stress treatment. [Actyvnist guaiacol peroxidasy u Cat2 knock-out mutantiv Arabidopsis thaliana za dii teplovoho stresu]. Phisiologia i biochimia kulturnykh rastenij. 45 (3), 246-253. [In Ukrainian].

24. Sakai, H., Lee, S. S., Tanaka, T., Numa, H., Kim, J., Kawahara, Y., Wakimoto, H., Yang, C., Iwamoto, M., Abe, T., Yamada, Y., Muto, A., Inokuchi, H., Ikemura, T., Matsumoto, T., Sasaki, T., & Itoh, T. (2013). Rice Annotation Project Database (RAP-DB): an integrative and interactive database for rice genomics. Plant and Cell Physiology, 54(2), e6. https://doi.org/10.1093/pcp/pcs183

25. Salse, J., Bolot, S., Throude, M., Jouffe, V., Piegu, B., Quraishi, U. M., Calcagno, T., Cooke, R., Delseny, M., & Feuillet, C. (2008). Identification and characterization of shared duplications between rice and wheat provide new insight into grass genome evolution. The Plant Cell, 20(1), 11–24. https://doi.org/10.1105/tpc.107.056309

26. Scharf, K. D., Höhfeld, I., & Nover, L. (1998). Heat stress response and heat stress transcription factors. Journal of biosciences, 23, 313-329. https://doi.org/10.1007/bf02936124

27. Scharf, K., Siddique, M., & Vierling, E. (2001). The expanding family of Arabidopsis thaliana small heat stress proteins and a new family of proteins containing α-crystallin domains (Acd proteins). Cell Stress & Chaperones, 6(3), 225. https://doi.org/10.1379/1466-1268(2001)006

28. Siddique, M., Gernhard, S., Von Koskull-Döring, P., Vierling, E., & Scharf, K. (2008). The plant sHSP superfamily: five new members in Arabidopsis thaliana with unexpected properties. Cell Stress and Chaperones, 13(2), 183–197. https://doi.org/10.1007/s12192-008-0032-6

29. Sun, L., Liu, Y., Kong, X., Zhang, D., Pan, J., Zhou, Y., Wang, L., Li, D., & Yang, X. (2012). ZmHSP16.9, a cytosolic class I small heat shock protein in maize (Zea mays), confers heat tolerance in transgenic tobacco. Plant Cell Reports, 31(8), 1473–1484. https://doi.org/10.1007/s00299-012-1262-8.

30. Volkov, R. A., Panchuk, I. I., & Schöffl, F. (2005). Small heat shock proteins are differentially regulated during pollen development and following heat stress in tobacco. Plant Molecular Biology, 57, 487-502. https://doi.org/10.1007/s11103-005-0339-y

31. Wang, A., Yu, X., Mao, Y., Liu, Y., Liu, G., Liu, Y., & Niu, X. (2015). Overexpression of a small heat‐shock‐protein gene enhances tolerance to abiotic stresses in rice. Plant Breeding, 134(4), 384–393. https://doi.org/10.1111/pbr.12289

32. Waters, E. R. (2012). The evolution, function, structure, and expression of the plant sHSPs. Journal of Experimental Botany, 64(2), 391–403. https://doi.org/10.1093/jxb/ers355

33. Waters, E. R., & Vierling, E. (2020). Plant small heat shock proteins – evolutionary and functional diversity. New Phytologist, 227(1), 24–37. https://doi.org/10.1111/nph.16536

34. Yadav, S., Modi, P., Dave, A., Vijapura, A., Patel, D., & Patel, M. (2020). Effect of abiotic stress on crops. In IntechOpen eBooks. https://doi.org/10.5772/intechopen.88434

35. Zhang, J., Chen, H., Wang, H., Li, B., Yi, Y., Kong, F., Liu, J., & Zhang, H. (2015). Constitutive expression of a tomato small heat shock protein gene LEHSP21 improves tolerance to high-temperature stress by enhancing antioxidation capacity in tobacco. Plant Molecular Biology Reporter, 34(2), 399–409. https://doi.org/10.1007/s11105-015-0925-3

Downloads


Abstract views: 3

Published

2025-01-22 — Updated on 2025-01-18

Issue

Section

БІОХІМІЯ, БІОТЕХНОЛОГІЯ, МОЛЕКУЛЯРНА ГЕНЕТИКА