ANALYSIS OF LANDMINE DETECTION METHODS AND THE IMPORTANCE OF STUDYING SOIL PROPERTIES FOR THEIR EFFECTIVE APPLICATION
DOI:
https://doi.org/10.31861/biosystems2024.01.160Keywords:
methods of mine detection, sensors, physical properties of soil, magnetic susceptibility of soil, electrical conductivity of soil, dielectric permittivity of soil, soil moistureAbstract
The review attempts to analyze the problem of mine detection and outline the prospects for using soil properties that are useful in detecting explosive objects and creating new algorithms for processing relevant data. The article analyzes five main areas in which modern landmine detection technologies are divided. Their main advantages and disadvantages are identified. Using the example of metal detectors and ground-penetrating radar technology, the necessity of a detailed study of the main physical properties of soils is justified, which will enable more efficient use of appropriate technologies for detecting landmines.
References
Barnawi, A., Kumar, N., Budhiraja, I., Kumar, K., Almansour, A., & Alzahrani, B. (2022). Deep reinforcement learning based trajectory optimization for magnetometer-mounted UAV to landmine detection. Computer Communications, 195, 441-450.
Bouchette, G., Gagnon, S., Church, P., Luu, T., & McFee, J. (2008). Electrical impedance tomography for underwater detection of buried mines. In Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XIII (Vol. 6953, pp. 179-190). SPIE.
Bruschini, C., & Gros, B. (1998). A survey of research on sensor technology for landmine detection. Journal of Conventional Weapons Destruction, 2(1).
Butler, D.K., 2003. Implications of magnetic background for unexploded ordnance detection. Journal of Applied Geophysics. 54, 111–125.
Csikai, J., Doczi, R., & Kiraly, B. (2004). Investigations on landmine detection by neutron-based techniques. Applied radiation and isotopes, 61(1), 11-20.
Das, Y., 2006. Effects of soil electromagnetic properties on metal detectors. IEEE Transactions on Geoscience and Remote Sensing 44, 1444–1453.
DeAngelo, D. (2018). Demilitarizing disarmament with mine detection rats. Culture and Organization, 24(4), 285-302.
Dearing, J.A., Hay, K.L., Baban, S.M.J., Huddleston, A.S., Wellington, E.M.H., Loveland, P.J. (1996). Magnetic susceptibility of soil: an evaluation of conflicting theories using a national data set. Geophysical Journal International. 127, 728–734.
Deutsch, C.V., Journel, A.G. (1992). GSLIB Geostatistical Software Library and User's Guide. Oxford University Press, New York.
Eblagh, K. (1996). Practical problems in demining and their solutions. In EUREL International
Confrence on the Detection of Abandoned Land Mines, Edinburgh, UK, No. 431, 1-5
Fassbinder, J.W.E., Stanjek, H., Vali, H., (1990). Occurrence of magnetic bacteria in soil. Nature 343, 161–163.
Filipi, J., Stojnić, V., Muštra, M., Gillanders, R. N., Jovanović, V., Gajić, S., ... & Risojević, V. (2022). Honeybee-based biohybrid system for landmine detection. Science of the total environment, 803, 150041.
Friedrich, G., Marker, A., Kanig, M. (1992). Heavy mineral surveys in exploration of lateritic terrain. In: Butt, C.R.M., Zeegers, H. (Eds.), Handbook of exploration geochemistry., 4. Elsevier, Amsterdam, pp. 483–498. Regolith exploration geochemistry in tropical and subtropical terrains.
Gillanders, R. N., Glackin, J. M., Babić, Z., Muštra, M., Simić, M., Kezić, N., ... & Filipi, J. (2021). Biomonitoring for wide area surveying in landmine detection using honeybees and optical sensing. Chemosphere, 273, 129646.
Gooneratne, C. P., Mukhopahyay, S. C., & Gupta, G. S. (2004). A review of sensing technologies for landmine detection: Unmanned vehicle based approach. In 2nd International Conference on Autonomous Robots and Agents (pp. 401-407).
Habib, Maki K. (2007). Controlled biological and biomimetic systems for landmine
detection. Biosens. Bioelectron. 23 (1), 1–18
Hibbs, A. D. (2003). Nuclear quadrupole resonance (paper i). Alternatives for Landmine Detection. RAND Corporation, 169-178.
Holliger, K., Maurer, H. (2004). Effects of stochastic heterogeneity on ray-based tomographic inversion of crosshole georadar amplitude data. Journal of Applied Geophysics 56, 177–193.
Igel, J. (2007). On the Small-Scale Variability of Electrical Soil Properties and Its Influence on Geophysical Measurements. Ph.D. Thesis, Frankfurt University, Frankfurt am Main, Germany.
Igel, J. (2008). The small-scale variability of electrical soil properties — influence on GPR measurements. 12th International Conference on Ground Penetrating Radar. Birmingham, UK.
Igel, J., Preetz, H., Altfelder, S. (2009). Predicting soil influence on the performance of metal detectors: Magnetic properties of tropical soils. Journal of ERW and Mine Action 13.1, 103–107.
Kasban, H., Zahran, O., Elaraby, S. M., El-Kordy, M., & Abd El-Samie, F. E. (2010). A comparative study of landmine detection techniques. Sensing and Imaging: An International Journal, 11, 89-112.
Kletetschka, G., Banerjee, S.K. (1995). Magnetic stratigraphy of Chinese loess as a record of natural fires. Geophysical Research Letters 22, 1341–1343.
Knödel, K., Lange, G., Voigt, H.-J. (Eds.) (2007). Environmental Geology: Handbook of Field Methods and Case Studies. Springer, Berlin.
Lampe, B., Holliger, K. (2003). Effects of fractal fluctuations in topographic relief, permittivity and conductivity on ground-penetrating radar antenna radiation. Geophysics 68, 1934–1944.
Landmine Monitor Report 2023. https://backend.icblcmc.org/assets/reports/Landmine-Monitors/LMM2023/Downloads/lm2023_briefing_ppt.pdf
MacDonald, J., Lockwood, J.R., McFee, J.E., Altschuler, T., Broach, T., Carin, L., Harmon, R., Rappaport, C., Scott, W., Weaver, R. (2003). Alternatives for Landmine Detection. RAND/White House Office of Science and Technology Policy (OSTP) Mine Detection Task Force Report, RAND Science and Technology Policy Institute, Report Number MR-1608-OSTP (ISBN 0-8330-3301-8), February 2003.
Makki, I., Younes, R., Francis, C., Bianchi, T., & Zucchetti, M. (2017). A survey of landmine detection using hyperspectral imaging. ISPRS Journal of Photogrammetry and Remote Sensing, 124, 40-53.
Martin, J. S., Fenneman, D. J., Codron, F. T., Rogers, P. H., Scott Jr, W. R., Larson, G. D., & McCall II, G. S. (2002). Ultrasonic displacement sensor for the seismic detection of buried land mines. In Detection and Remediation Technologies for Mines and Minelike Targets VII (Vol. 4742, pp. 606-616). SPIE.
McLean, I., Sargisson, R., & Mansfield, I. (2005). Detection of landmines by dogs: environmental and behavioural determinants.
Metwaly, M. (2007). Detection of metallic and plastic landmines using the GPR and 2-D resistivity techniques. Natural Hazards and Earth System Sciences, 7(6), 755-763.
Mullins, C.E. (1977). Magnetic susceptibility of the soil and its significance in soil science: A review. Journal of Soil Science 28, 223–246.
Nicoud, J.D. (1996). Post-conflict and sustainable humanitarian demining. In Proceedings of the Technology and the Mine Problem Symposium (pp. 4-63/4-66). Monterey, CA: Naval Postgraduate School.
Ostafin, M., & Nogaj, B. (2007). 14N-NQR based device for detection of explosives in landmines. Measurement, 40(1), 43-54.
Preetz, H., Altfelder, S., Igel, J. (2008). Tropical soils and landmine detection — an approach for a classification system. Soil Science Society of America Journal 72, 151–159.
Rajesh, K. R., Murali, R., & Mohanachandran, R. (2011). Advanced acousto-ultrasonic landmine detector for humanitarian mine sweeping. In 2011 IEEE Global Humanitarian Technology Conference (pp. 316-321). IEEE.
Robinson, D.A., Jones, S.B., Wraith, J.M., Or, D., Friedmann, S.P. (2003). A review of advances in dielectric and electrical conductivity measurement in soils using time domain reflectometry. Vadose Zone Journal 2, 444–475.
Robledo, L., Carrasco, M., Mery, D. (2009). A survey of land mine detection technology. Int. J. Remote Sens. 30 (9), 2399–2410.
Sato, M., Yokota, Y., Takahashi, K., & Grasmueck, M. (2012). Landmine detection by 3D GPR system. In Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XVII (Vol. 8357, pp. 322-330). SPIE.
Schwertmann, U. (1988). Occurrence and formation of iron oxides in various pedoenvironments. In: Stucki, J.W., Goodman, B.A., Schwertmann, U. (Eds.), Iron in Soils and Clay Minerals., NATO ASI Series C217, D. Reidel, Dordrecht, pp. 267–308.
Singer, M.J., Fine, P. (1989). Pedogenetic factors affecting magnetic susceptibility of Northern California soils. Soil Science Society of America Journal 53, 1119–1127.
Takahashi, K., Preetz, H., & Igel, J. (2011). Soil properties and performance of landmine detection by metal detector and ground-penetrating radar—Soil characterisation and its verification by a field test. Journal of Applied Geophysics, 73(4), 368-377.
Yuk, S., Kim, K. H., & Yi, Y. (2006). Detection of buried landmine with X-ray backscatter technique. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 568(1), 388-392.