BIOINFORMATIC ANALYSIS OF THE CODING SEQUENCES OF NICOTIANA SYLVESTRIS sHSP
DOI:
https://doi.org/10.31861/biosystems2024.01.031Keywords:
abiotic stress, bioinformatic analysis, genetic polymorphism, molecular genomics, molecular evolution, multigene family, α-crystallin domain, sHSP, N. sylvestrisAbstract
During the evolution, plants have developed defense mechanisms against temperature stress associated with the synthesis of protective proteins, among which molecular chaperones predominate, in particular low molecular weight heat stress proteins (sHSPs). Despite the important role these proteins play in the defense response to high temperature stress, they are still poorly studied for many taxonomic groups of plants. In particular, almost nothing is known about the organization and diversity of heat shock genes/proteins in representatives of such an important genus as Nicotiana (tobacco). The article presents the results of a bioinformatic analysis of the multigene/multiprotein sHSP family in N. sylvestris, an important model object in plant physiology, biochemistry, molecular genetics and cell biotechnology.
The GenBank database was used to search for homologous sequences using the BLAST algorithm. Amino acid sequences were aligned using the L-INS-I method on the MAFFT server. Phylogenetic analysis was performed by the maximum likelihood method using the PhyML plugin for Geneious Prime 2023.2.1. Statistical support of branches was calculated using the aLRT-Chi2 method.
It was found that within the compared amino acid sequences of N. sylvestris sHSP, three parts can be distinguished: the variable N-terminal region, the conserved α-crystallin domain (ACD), and the C-terminal region. Based on the alignment of the sHSP amino acid sequences, a similarity dendrogram was constructed, on which several clades with high statistical support are visualized.
The results of the comparative analysis of the amino acid sequences show that sHSPs of N. sylvestris belong to 10 structural classes. Proteins of seven classes are believed to be localized in the cytoplasm and/or nucleus, while the rest are located in the endoplasmic reticulum, mitochondria, plastids and peroxisomes.
In total, according to the results of bioinformatic analysis, 24 genes encoding sHSP were found in the genome of N. sylvestris, as well as one pseudogene in which the fragment encoding the N-terminal region has been lost. Since the sequence of the pseudogene differs slightly from the closest representatives of this group, it can be assumed that the conversion of this region into a pseudogene is a relatively recent evolutionary event.
References
Aldubai, A. A., Alsadon, A. A., Migdadi, H. H., Alghamdi, S. S., Al-Faifi, S. A., & Afzal, M. (2022). Response of tomato (Solanum lycopersicum L.) genotypes to heat stress using morphological and expression study. Plants, 11(5), 615. https://doi.org/10.3390/plants11050615
Alsamir, M., Mahmood, T., Trethowan, R., & Ahmad, N. (2021). An overview of heat stress in tomato (Solanum lycopersicum L.). Saudi Journal of Biological Sciences, 28(3), 1654–1663. https://doi.org/10.1016/j.sjbs.2020.11.088
Anisimova, M., & Gascuel, O. (2006). Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Systematic Biology, 55(4), 539–552. https://doi.org/10.1080/1063515060075545
Boratyn, G. M., Camacho, C., Cooper, P. S., Coulouris, G., Fong, A., Ma, N., Madden, T. L., Matten, W. T., McGinnis, S. D., Merezhuk, Y., Raytselis, Y., Sayers, E. W., Tao, T., Ye, J., & Zaretskaya, I. (2013). BLAST: a more efficient report with usability improvements. Nucleic Acids Research, 41(W1),W29–W33. ttps://doi.org/10.1093/nar/gkt282
Buzduga, I.M., Volkov, R.A., & Panchuk I.I. (2014). Heat stress affects lipid peroxidation and activity of ascorbate peroxidase in Nicotaina tabacum [Vplyv teplovoho stresu na peroksidne okyslennia lipidiv ta activnist askorbat peroxidasy u Nicotiana tabacum]. Phisiologia Rastenij i Genetika. 46 (2), 151-157. [In Ukrainian].
D’Andrea, L., Sierro, N., Ouadi, S., Hasing, T., Rinaldi, E., Ivanov, N. V., & Bombarely, A. (2023). Polyploid Nicotiana section Suaveolentes originated by hybridization of two ancestral Nicotiana clades. Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.999887
Ennajdaoui, H., Vachon, G., Giacalone, C., Besse, I., Sallaud, C., Herzog, M., & Tissier, A. (2010). Trichome specific expression of the tobacco (Nicotana sylvestris) cembratrien-ol synthase genes is controlled by both activating and repressing cis-regions. Plant Molecular Biology, 73(6), 673–685. https://doi.org/10.1007/s11103-010-9648-x
González-Gordo, S., Palma, J., & Corpas, F. (2023). Small heat shock protein (sHSP) gene family from sweet pepper (Capsicum annuum L.) fruits: involvement in ripening and modulation by nitric oxide (NO). Plants, 12(2), 389. https://doi.org/10.3390/plants12020389
Goodspeed, T. H., & Mildred C. Thompson. (1959). Cytotaxonomy of Nicotiana. II. Botanical Review, 25(2), 385–415. http://www.jstor.org/stable/4353598
Guindon, S., & Gascuel, O. (2003). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology, 52(5), 696–704. https://doi.org/10.1080/10635150390235520
Hagymasi, A. T., Dempsey, J. P., & Srivastava, P. K. (2022). Heat‐Shock proteins. Current Protocols, 2(11). https://doi.org/10.1002/cpz1.592
Hassan, M. U., Chattha, M. U., Khan, I., Chattha, M. B., Barbanti, L., Aamer, M., Iqbal, M. M., Nawaz, M., Mahmood, A., Ali, A., & Aslam, M. T. (2020). Heat stress in cultivated plants: nature, impact, mechanismms, and mitigation strategies—a review. Plant Biosystems, 155(2), 211–234. https://doi.org/10.1080/11263504.2020.1727987
Ji, X., Yu, Y., Ni, P., Zhang, G., & Guo, D. (2019). Genome-wide identification of small heat-shock protein (HSP20) gene family in grape and expression profile during berry development. BMC Plant Biology, 19(1). https://doi.org/10.1186/s12870-019-2031-4
Katoh, K., Rozewicki, J., & Yamada, K. D. (2017). MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics, 20(4), 1160–1166. https://doi.org/10.1093/bib/bbx108
Khan, S., Jabeen, R., Deeba, F., Waheed, U., Khanum, P., & Iqbal, N. (2021). Heat shock proteins: classification, functions and expressions in plants during environmental stresses. Journal of Bioresource Management, 8(2), 9. https://doi.org/10.35691/JBM.1202.0183.
Letunic, I., & Bork, P. (2021). Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Research, 49(W1), W293–W296. https://doi.org/10.1093/nar/gkab301.
Maliga, P., & Svab, Z. (2010). Engineering the plastid genome of Nicotiana sylvestris, a diploid model species for plastid genetics. In Methods in molecular biology (pp. 37–50). https://doi.org/10.1007/978-1-61737-957-4_2
Miroshnichenko, G. P., Volkov, R. A., & Kostishin, S. S. (1988). Polynucleotide sequence divergence in DNAs of interspecific Solanaceae hybrids. Biochemistry (Mosc.), 53, 565-572.
Okamuro, J. K., & Goldberg, R. B. (1985). Tobacco single-copy DNA is highly homologous to sequences present in the genomes of its diploid progenitors. Molecular and General Genetics MGG, 198(2), 290-298. https://doi.org/10.1007/BF00383009
Panchuk, I. I., Volkov, R. A., & Schöffl, F. (2002). Heat stress-and heat shock transcription factor-dependent expression and activity of ascorbate peroxidase in Arabidopsis. Plant physiology, 129(2), 838-853. https://doi.org/10.1104/pp.001362
Poudel, P. B., & Poudel, M. R. (2020). Heat stress effects and tolerance in wheat: A review. J. Biol. Today’s World, 9(3), 1-6.
Pyrizhok, R.Yu., Volkov, R.A., & Panchuk I.I. (2009). Peroxidase activity in maize seedlings upon heat stress [Actyvnist peroxidasy prorostkiv kukurudzy v umovakh teplovoho stresu] Phisiologia i biochimia kulturnykh rastenij. 41 (1): 44-49. [In Ukrainian].
Rusnak, T.O., Doliba, I.M., Volkov, R.A., & Panchuk I.I. (2013). Guaiacol peroxidase activity in Cat2 knock-out mutant of Arabidopsis thaliana upon heat stress treatment. [Actyvnist guaiacol peroxidasy u Cat2 knock-out mutantiv Arabidopsis thaliana za dii teplovoho stresu]. Phisiologia i biochimia kulturnykh rastenij. 45 (3), 246-253. [In Ukrainian].
Sallaud, C., Giacalone, C., Töpfer, R., Goepfert, S., Bakaher, N., Rösti, S., & Tissier, A. (2012). Characterization of two genes for the biosynthesis of the labdane diterpene Z‐abienol in tobacco (Nicotiana tabacum) glandular trichomes. Plant Journal, 72(1), 1–17. https://doi.org/10.1111/j.1365-313x.2012.05068.x.
Scharf, K. D., Höhfeld, I., & Nover, L. (1998). Heat stress response and heat stress transcription factors. Journal of biosciences, 23, 313-329.
Scharf, K., Siddique, M., & Vierling, E. (2001). The expanding family of Arabidopsis thaliana small heat stress proteins and a new family of proteins containing α-crystallin domains (Acd proteins). Cell Stress & Chaperones, 6(3), 225. https://doi.org/10.1379/1466-1268(2001)006
Sekine, K., Tomita, R., Takeuchi, S., Atsumi, G., Saitoh, H., Mizumoto, H., Kiba, A., Yamaoka, N., Nishiguchi, M., Hikichi, Y., & Kobayashi, K. (2012). Functional differentiation in the Leucine-Rich repeat domains of closely related plant Virus-Resistance proteins that recognize common AVR proteins. Molecular Plant-microbe Interactions, 25(9), 1219–1229. https://doi.org/10.1094/mpmi-11-11-0289
Sierro, N., Battey, J. N., Ouadi, S., Bovet, L., Goepfert, S., Bakaher, N., Peitsch, M. C., & Ivanov, N. V. (2013). Reference genomes and transcriptomes of Nicotiana sylvestris and Nicotiana tomentosiformis. Genome Biology, 14(6). https://doi.org/10.1186/gb-2013-14-6-r60
Thyssen, G., Svab, Z., & Maliga, P. (2012). Exceptional inheritance of plastids via pollen in Nicotiana sylvestris with no detectable paternal mitochondrial DNA in the progeny. Plant Journal, 72(1), 84–88. https://doi.org/10.1111/j.1365-313x.2012.05057.x
Volkov, R. A., Panchuk, I. I., & Schöffl, F. (2005). Small heat shock proteins are differentially regulated during pollen development and following heat stress in tobacco. Plant Molecular Biology, 57, 487-502. https://doi.org/10.1007/s11103-005-0339-y
Waters, E. R. (2012). The evolution, function, structure, and expression of the plant sHSPs. Journal of Experimental Botany, 64(2), 391–403. https://doi.org/10.1093/jxb/ers355
Waters, E. R., & Vierling, E. (2020). Plant small heat shock proteins – evolutionary and functional diversity. New Phytologist, 227(1), 24–37. https://doi.org/10.1111/nph.16536
Yemets, A., Stelmakh, O., & Blume, Y. B. (2008). Effects of the herbicide isopropyl‐N‐phenyl carbamate on microtubules and MTOCs in lines of Nicotiana sylvestris resistant and sensitive to its action. Cell Biology International, 32(6), 623–629. https://doi.org/10.1016/j.cellbi.2008.01.012
Zhang, J., Chen, H., Wang, H., Li, B., Yi, Y., Kong, F., Liu, J., & Zhang, H. (2015). Constitutive expression of a tomato small heat shock protein gene LEHSP21 improves tolerance to high-temperature stress by enhancing antioxidation capacity in tobacco. Plant Molecular Biology Reporter, 34(2), 399–409. https://doi.org/10.1007/s11105-015-0925-3