SOLVING EXISTING PROBLEMS WITH SOIL MAPS IN UKRAINE

Authors

  • V. CHERLINKA Yuriy Fedkovych Chernivtsi National University Author
  • Y. DMYTRUK Yuriy Fedkovych Chernivtsi National University Author

DOI:

https://doi.org/10.31861/biosystems2018.01.094

Keywords:

soil map, cartogram of agro-industrial groups of soils, training data set, simulation, morphometric parameters, DEM, predicative algorithms

Abstract

The current situation with soil cartographic information is considered and it is shown that it is urgently needed to update it in accordance with modern requirements. Analysis of the current situation makes it possible to identify 2 main ways to overcome such a crisis, which together with their advantages and disadvantages. The first way — involves a repeated large-scale soil survey based on innovative scientific and methodological approaches using ground–based surveys, unmanned aerial vehicles and remote sensing of the Earth. However, it has such significant shortcomings as high time and labor costs, the corresponding economic ones, which is relevant for the state budget, and given the lack of sufficient professional staffing, such a path looks not quite realizable in the short term. Based on the analysis of the current political and economic state of Ukraine, it is proposed to use the second possible path, the essence of which is to correct existing soil maps on the basis of archival materials and build on their basis predictive mathematical models of soil cover, including for locations with missing data. Among its positive aspects, we note the use of new low–budget
scientific and methodological methods for modeling cartographic soil materials, low time and labor costs, the possibility of using remote sensing data to refine the contours. There are also certain negative aspects that are carefully analyzed and, in particular, concern the access to scanned original archival soil maps and technical reports, as well as the desirability of minimum field expeditions to verify the corrected maps. A step–by–step algorithm for solving such a global problem within Ukraine is proposed. The proposed approach will allow creating a modern soil science GIS with the most adapted set of data, which will be convenient to use, scalable and dynamically supplemented. This will also become a prerequisite for the creation of a national database of soil data and its integration with minimal rearrangements and subsequent development within the future functioning version of the National Geospatial Data
Infrastructure. It also adapts it to the maximum extent possible with international similar systems SOTER, SOVEUR and the like. Taking into account the announced start of work in this direction and the detected range of problems, it is necessary to involve the soil science community. Given the scale of such a project and the cost of modern software, special attention should be paid to free free software under the free GNU GPL license: Debian, GRASS GIS, Quantum GIS, SAGA GIS, R-Statistic etc, which allows you to perform the full range of proposed activities in a closed loop.

References

Achasov A. B. Gruntovo-geoinformacijni zasady protyerozijnoyi optymizaciyi agrolandshaftiv: teoriya i praktyka. Avtoref. dys. D-ra s.-g. nauk. Nacionalnyj universytet bioresursiv i pryrodokorystuvannya Ukrayiny. K. 2009. (in Ukrainian).

Achasov A. B. Kartografuvannya gruntovogo pokryvu z vykorystannyam cyfrovyx modelej relyefu v Problemy bezperervnoyi geografichnoyi osvity i kartografiyi. — Zbirnyk naukovyx pracz. Xarkiv: Xarkivskyj nacionalnyj universytet imeni V. N. Karazina, 2012; 16: 3–5. (in Ukrainian).

Achasov A. B., Achasova A. O. Metodychni osnovy suchasnogo prostorovogo monitoryngu gruntiv. Visnyk Xarkivskogo nacionalnogo universytetu imeni V. N. Karazina. – Seriya: Ekologiya. 2011; 944 (6): 20–27. (in Ukrainian).

Achasov A. B., Bydolax D. Y. Yspolzovanye materyalov kosmycheskoj y nazemnoj cyfrovoj fotosnemok dlya opredelenyya soderzhanyya gumusa v pochvax. Pochvovedenye. 2008; 3: 280– 286. (in Ukrainian).

Achasov A. B., Titenko G. V., Kurilov V. I. Dani dystancijnogo zonduvannya yak osnova kartografuvannya gruntiv: ekonomichnyj aspect. Visnyk Xarkivskogo nacionalnogo universytetu imeni V. N. Karazina. – Seriya: Ekologiya. 2015; 1104 (10): 60–66. (in Ukrainian).

Browning Dawn M, Duniway Michael C. Digital soil mapping in the absence of field training data: A case study using terrain attributes and semiautomated soil signature derivation to distinguish ecological potential. Applied and Environmental Soil Science. 2011; 2011: 1-12.

Brungard Colby W., Boettinger Janis L., Duniway Michael C., Wills Skye A., Edwards Thomas C. Machine learning for predicting soil classes in three semi–arid landscapes. Geoderma. 2015; 239: 68–83.

Bui Elisabeth N., Moran Christopher J. A strategy to fill gaps in soil survey over large spatial extents: an example from the Murray–Darling basin of Australia Geoderma. 2003; 111:21–44.

Caten ten Alexandre, Dalmolin Ricardo Simao Diniz, Pedron Fabricio de Araujo, Ruiz Luis Fernando Chimelo, Silva Carlos Antonio da. An appropriate data set size for digital soil mapping in Erechim, Rio Grande do Sul, Brazil Revista Brasileira de Ciencia do Solo. 2013; 37: 359–366.

Cherlinka V. R. Influence of resolution of digital elevation models on the quality of predicative simulation of soil cover. Gruntoznavstvo. 2017; 18: 100 Biological systems. Vol. 10. Is. 1. 2018 79–95. (in Ukrainian).

Cherlinka Vasyl. Using Geostatistics, DEM and Remote Sensing to Clarify Soil Cover Maps of Ukraine. in Soil Science Working for a Living: Applications of soil science to present–day problems (Dent David, Dmytruk Yuriy. eds.) ch. 7: 89–100. Cham, Switzerland: Springer–Verlag GmbH 2017.

Cherlinka V. R. Metodologiya otrymannya korektnyx cyfrovyx modelej relyefu dlya agroximichnyx doslidzhen. in Oxorona gruntiv. Zb. nauk. pracz. Specz. vyp. prysvyachenyj Mizhnarodnij naukovo–praktychnij konferenciyi z nagody 50– richchya zasnuvannya agroximichnoyi sluzhby Ukrayiny. K.: TOV «VIK–PRYNT» 2014; 391–395. (in Ukrainian).

Cherlinka V. R. Adaptation of large–scale soil maps to their practical use in GIS in Ahrokhimiya i gruntoznavstvo. Mizhvid. tem. nauk. zb. —Kharkiv: TOV «Smuhasta typohrafiya». 2015; 84: 20–28. (in Ukrainian).

Cherlinka V. R. Morphometric parameters of relief as basis for predictive modeling of spatial distribution of soil cover in Agrochemistry and Soil Science. Collected papers. Kharkiv: NSC ISSAR 2017; 86: 5–16. (in Ukrainian).

Cherlinka V. R. Shlyaxy podolannya kryzy z gruntovymy kartografichnymy materialamy in IV Vseukrayinska naukovo–praktychna konferenciya «Nacionalnyj naukovyj prostir: perspektyvy, innovaciyi, texnologiyi» 3–4 lystopada 2017r. Naukove partnerstvo «Centr naukovyx texnologij» (Xarkiv), NP «CzNT» 2017; 61–63 (in Ukrainian).

Cherlinka V. R. Variations in the predictive efficiency of soil maps depending on the methods of constructing training samples of predicative algorithms. Ecology and Noospherology. 2017; 28: 55–71. (in Ukrainian).

Cherlinka V. R., Dmytruk Yu. M. Problems of creation, georectification and use of large–scale digital elevation models. Heopolytyka y ekoheodynamyka rehyonov. 2014; 10: 239–244. (in Ukrainian).

Cherlinka V. R., Dmytruk Y. M., Zaharovskii V. S. Comparative estimation of the accuracy of simulation modeling of soil cover and forecast of cartograms of agro–industrial groups. Biological systems. 2017; 9: 298–308.

Conrad O., Bechtel Benjamin, Bock M. et al. System for automated geoscientific analyses (SAGA) v. 2.1.4 Geoscientific Model Development. 2015; 8: 1991–2007.

Debella–Gilo Misganu, Etzelmüller Bernd. Spatial prediction of soil classes using digital terrain analysis and multinomial logistic regression modeling integrated in GIS: Examples from Vestfold County, Norway. Catena. 2009; 77: 8–18.

Debian. Debian GNU Linux – the universal operating system. 2018.

Dmytruk Y. M., Cherlinka V. R., Stuzuk O. V. The concept and methodology of analysis urbolandscape based elevation models (for an example Chernivtsi). Biological systems. 2013; 5: 264–268.

Dobos E., Hengl T. Soil mapping applications in Geomorphometry: Concepts, Software, Applications (Hengl Tomislav, Reuter Hannes I., eds.); 33 of Developments in Soil Sciences. Amsterdam: Elsevier 2009; 20: 461–479.

Florinsky Igor V. Digital Terrain Analysis in Soil Science and Geology. Amsterdam: ACADEMIC PRESS / Elsevier. 2 ed. 2016.

Giasson E., Figueiredo S. R., Tornquist C. G., Clarke R. T. Digital soil mapping using logistic regression on terrain parameters for several ecological regions in Southern Brazil in Digital Soil Mapping with Limited Data (Hartemink Alfred E., McBratney Alex B., Lourdes Mendonca–Santos Maria, eds.), Amsterdam: Springer Netherlands 2008; ch. 19:225– 232.

Grinand Clovis, Arrouays Dominique, Laroche Bertrand, Martin Manuel Pascal. Extrapolating regional soil landscapes from an existing soil map: Sampling intensity, validation procedures, and integration of spatial context. Geoderma. 2008; 143: 180–190.

Hastie Trevor, Tibshirani Robert, Friedman Jerome. The elements of statistical learning: Data mining, inference, and prediction. Springer Series in Statistics. New York: Springer. 2 ed. 2009.

Hengl Tomislav. A practical guide to geostatistical mapping. Luxembourg: Office for Official Publications of the European Communities. 2 ed. 2009.

Heung Brandon, Ho Hung Chak, Zhang Jin, Knudby Anders, Bulmer Chuck E., Schmidt Margaret G. An overview and comparison of machine–learning techniques for classification purposes in digital soil mapping. Geoderma. 2016; 265: 62–77.

Heung Brandon, Hodul Matus, Schmidt Margaret G. Comparing the use of training data derived from legacy soil pits and soil survey polygons for mapping soil classes. Geoderma. 2017; 290: 51–68.

Hofierka Jaroslav. Interpolation of radioactivity data using regularized spline with tension. Applied GIS. 2005; 1(2):16-1–16-13.

Hofierka1 Jaroslav, Parajka Juraj, Mitasova Helena, Mitas Lubos. Multivariate interpolation of precipitation using regularized spline with tension. Transactions in GIS. 2002; 6: 135–150.

Horáček Matěj, Samec Pavel, Minář Jozef. The mapping of soil taxonomic units via fuzzy clustering – A case study from the Outer Carpathians, Czechia. Geoderma. 2018; 326: 111– 122.

Kempen Bas, Brus Dick J., Heuvelink Gerard B. M., Stoorvogel Jetse J. Updating the 1:50,000 Dutch soil map using legacy soil data: A multinomial logistic regression approach. Geoderma. 2009; 151: 311– 326.

Kuhn Max. Building Predictive Models in R Using the caret Package. Journal of Statistical Software. 2008; 28: 1–26.

Kuhn Max, Johnson Kjell. Applied Predictive Modeling. New York: Springer 2013.

Lagacherie P., Robbez–Masson J. M., Nguyen–The N., Barthes J. P. Mapping of reference area representativity using a mathematical soilscape Біологічні системи. Т. 10. Вип. 1. 2018 101 distance. Geoderma. 2001; 101: 105–118.

Landis J. Richard, Koch Gary G. The Measurement of Observer Agreement for Categorical Data. Biometrics. 1977; 33: 159–174.

Li Weidong, Zhang Chuanrong. A Random–Path Markov Chain Algorithm for Simulating Categorical Soil Variables from Random Point Samples. Soil Science Society of America Journal. 2007; 71: 656– 668.

Liu Bing. Web Data Mining: Exploring Hyperlinks, Contents and Usage Data. London New York Dordrecht: SpringerVerlag GmbH. 2 ed. 2011.

MacMillan R. A. Experiences with applied DSM: protocol, availability, quality and capacity building in Digital Soil Mapping with Limited Data (Hartemink Alfred E., McBratney Alex B., Lourdes Mendonça–Santos Maria, eds.). Amsterdam: Springer Netherlands 2008;113–135.

Malone Brendan P., Minasny Budiman, McBratney Alex B. Using R for Digital Soil Mapping. Progress in Soil Science. Springer International Publishing 2016.

.McBratney Alex B., Santos M. L. Mendonça, Minasny Budiman. On digital soil mapping. Geoderma. 2003; 117: 3–52.

Mitasová Helena, Hofierka Jaroslav. Interpolation by regularized spline with tension: II. Application to terrain modeling and surface geometry analysis. Mathematical Geology. 1993; 25: 657–669.

Mitasova Helena, Mitas Lubos. Interpolation by regularized spline with tension: I. Theory and implementation. Mathematical Geology. 1993; 25: 641–655.

Polchyna Svitlana Myxajlivna, Nikorych Volodymyr Andrijovych, Danchu Oksana Anatoliyivna. Zastosuvannya suchasnoyi systemy klasyfikaciyi gruntiv FAO/WRB do karty gruntovogo pokryvu Cherniveczkoyi oblasti. Gruntoznavstvo. 2004; 5: 27–33. (in Ukrainian).

Scull P., Franklin J., Chadwick O. A., McArthur D. Predictive soil mapping: a review Progress in Physical Geography. 2003; 27:171–197.

Shatokhin A. V., Achasov A. B. Use of modern technologies for mapping the soil cover of the Northern Donets Steppe. Eurasian Soil Science. 2005; 38: 695–702.

Truskaveczkyj Stanislav Romanovych. Vykorystannya bagatospektralnogo kosmichnogo skanuvannya ta geoinformacijnyx system u doslidzhenni gruntovogo pokryvu Polissya Ukrayiny. – Rukopys. Avtoref. dys. kand. s.-g. nauk. In–t gruntoznavstva ta agroximiyi im. O. N. Sokolovskogo UAAN. Xarkiv 2006. (in Ukrainian).

Truskaveczkyj S. R., Byndych T. Yu., Kolyada L. P., Vyatkin K. V., Sherstyuk O. I. Vykorystannya danyx suputnykovoyi zjomky v systemax tochnogo zemlerobstva. Inzheneriya pryrodokorystuvannya. 2017; 1(7): 29–35. (in Ukrainian).

Venables William N., Ripley Brian D. Modern Applied Statistics with S; 53 (1) of Statistics and Computing. New York: Springer–Verlag, 4 ed. 2002.

Walter C., Lagacherie P., Follain S. Integrating pedological knowledge into digital soil mapping in Digital Soil Mapping: An Introductory Perspective (Lagacherie Philippe, McBratney Alex B., Voltz Marc, eds.); 31 of Developments in Soil Science. Amsterdam: Elsevier 2006. 22: 281–301.

About the national infrastructure of geospatial data. Draft Law of Ukraine of 03.12.2009 No 5407, 2009: http://minagro.gov.ua/node/22581. (in Ukrainian).

Derzhgeokadastr Ukrayiny. Prototyp Nacionalnoyi infrastruktury geoprostorovyx danyx v Ukrayini. 22 lyutogo 2018 r. 2018. https://www.kmu.gov.ua/ua/news/derzhgeokadastrprezentuvav-prototip-nacionalnoyi-infrastrukturigeoprostorovih-danih-v-ukrayini (in Ukrainian).

Derzhgeokadastr Ukrayiny. Nacionalna infrastruktura geoprostorovyx danyx 2018. http://nsdi.land.gov.ua/ua/home (in Ukrainian).

Derzhgeokadastr Ukrayiny. Yaponska agenciya mizhnarodnoyi spivpraci (JICA). Yaponiya ta Ukrayina rozpochynayut dvorichnyj proekt u ramkax stvorennya Nacionalnoyi infrastruktury geoprostorovyx danyx 2015. http://www.kmu.gov.ua/control/publish/articleart_id =248487621 (in Ukrainian).

EasyTrace group. Easy Trace 7.99. Digitizing software 2015.

GNU GPL. GNU GENERAL PUBLIC LICENSE 2016.

GRASS Development Team. Geographic Resources Analysis Support System (GRASS GIS) Software Version 7.2. 2017.

KMU. Skhvalennya zakonoproektu «Pro nacionalnu infrastrukturu geoprostorovyx danyx» 2018. http://land.gov.ua/uriad-skhvalyv-zakonoproekt-pronatsionalnu-infrastrukturu-heoprostorovykh-danykh/ (in Ukrainian).

On approval of the Concept of the Law of Ukraine. About the national geospatial data infrastructure. KMU. Order on 21 November 2007. No 1021. 2007: http://zakon4.rada.gov.ua/laws/show/1021–2007– D180. (in Ukrainian).

OpenStreetMap contributors. Planet dump retrieved from https://planet.osm.org 2018.

QGIS Development Team. QGIS Geographic Information System 2015.

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria 2018

Downloads


Abstract views: 23

Published

2018-07-06

Issue

Section

ГРУНТОЗНАВСТВО