DOSE-DEPENDENT EFFECT OF IMIDAZOLINONE HERBICIDES ON THE MONOCULTURE OF DESMODESMUS ARMATUS
DOI:
https://doi.org/10.31861/biosystems2025.03.375Keywords:
imidazolinone herbicides, imazamox, Desmodesmus armatus, microalgae, dose-dependent effect, photosynthetic pigments, freshwater ecosystemsAbstract
This study investigates the dose-dependent effects of imidazolinone herbicides, particularly imazamox, on a monoculture of the green microalga Desmodesmus armatus, which is a sensitive test organism for ecotoxicological assessments. The relevance of the research is обусловлена the increasing risk of herbicide entry into freshwater bodies as a result of agricultural runoff and anthropogenic disturbances, which may adversely affect primary producers in aquatic ecosystems.
The toxic effects of imazamox were evaluated based on culture growth parameters (cell density and optical density) and the state of the photosynthetic apparatus by determining the contents of chlorophylls a and b and carotenoids over 14–28 days of exposure. It was established that the response of Desmodesmus armatus is clearly concentration-dependent. Low concentrations (0.01–0.06 mg/L) induced a short-term hormetic effect, characterized by stimulation of growth and the pigment system. Medium concentrations (0.1–1 mg/L) caused latent toxicity, manifested by gradual growth inhibition and a decrease in chlorophyll content. High concentrations (2.5–10 mg/L) resulted in persistent suppression of photosynthetic activity, degradation of the pigment system, and the absence of adaptive responses.
The obtained results confirm the suitability of Desmodesmus armatus as a bioindicator for assessing the toxicity of imidazolinone herbicides and emphasize the importance of considering the prolonged effects of pesticides when evaluating their ecological safety.
References
1. Ceschin, S., Bellini, A., & Scalici, M. (2021). Aquatic plants and ecotoxicological assessment in freshwater ecosystems: a review. Environmental Science and Pollution Research, 28, 4975-4988. https://doi.org/10.1007/s11356-020-11496-3
2. Culture Collection of Algae and Protozoa (CCAP). (n.d.). Desmodesmus armatus (CCAP 258/197) [Мікрофотографія]. CCAP Catalogue. https://www.ccap.ac.uk/catalogue/strain-258-197
3. Dosnon-Olette, R., Trotel-Aziz, P., Couderchet, M., & Eullaffroy, P. (2010). Fungicides and herbicide removal in Scenedesmus cell suspensions. Chemosphere, 79(2), 117-123. https://doi.org/10.1016/j.chemosphere.2010.02.005
4. Fassiano, A. V., March, H., Santos, M., Juárez, Á. B., & Ríos de Molina, M. D. C. (2022). Toxicological effects of active and inert ingredients of imazethapyr formulation Verosil® against Scenedesmus vacuolatus (Chlorophyta). Environmental Science and Pollution Research, 29(21), 31384-31399. https://doi.org/10.1007/s11356-021-17962-w
5. Gómez-Martínez, D., Bengtson, J., Nilsson, A. K., Clarke, A. K., Nilsson, R. H., Kristiansson, E., & Corcoll, N. (2023). Phenotypic and transcriptomic acclimation of the green microalga Raphidocelis subcapitata to high environmental levels of the herbicide diflufenican. Science of the Total Environment, 875, 162604. https://doi.org/10.1016/j.scitotenv.2023.162604
6. Gonçalves-Filho, D., Silva, C. C. G., & De Souza, D. (2020). Pesticides determination in foods and natural waters using solid amalgam-based electrodes: challenges and trends. Talanta, 212, 120756. https://doi.org/10.1016/j.talanta.2020.120756
7. Grasso, G., Cocco, G., Zane, D., Frazzoli, C., & Dragone, R. (2022). Microalgae-based fluorimetric bioassays for studying interferences on photosynthesis induced by environmentally relevant concentrations of the herbicide diuron. Biosensors, 12(2), 67. https://doi.org/10.3390/bios12020067
8. Hasenbein, S., Peralta, J., Lawler, S. P., & Connon, R. E. (2017). Environmentally relevant concentrations of herbicides impact non-target species at multiple sublethal endpoints. Science of the Total Environment, 607, 733-743. https://doi.org/10.1016/j.scitotenv.2017.06.270
9. Herrero-Hernández, E., Rodríguez-Cruz, M. S., Pose-Juan, E., Sánchez-González, S., Andrades, M. S., & Sánchez-Martín, M. J. (2017). Seasonal distribution of herbicide and insecticide residues in the water resources of the vineyard region of La Rioja (Spain). Science of the Total Environment, 609, 161-171. https://doi.org/10.1016/j.scitotenv.2017.07.113
10. Huang, J., Piao, X., Zhou, Y., & Li, S. (2024). Toxicity Assessment of 36 Herbicides to Green Algae: Effects of Mode of Action and Chemical Family. Agrochemicals, 3(2). https://doi.org/10.3390/agrochemicals3020012
11. Husk, B., Sanchez, J. S., Leduc, R., Takser, L., Savary, O., & Cabana, H. (2019). Pharmaceuticals and pesticides in rural community drinking waters of Quebec, Canada–a regional study on the susceptibility to source contamination. Water Quality Research Journal, 54(2), 88-103. https://doi.org/10.2166/wqrj.2019.038
12. Li, J., Min, Z., Li, W., Xu, L., Han, J., & Li, P. (2020). Interactive effects of roxithromycin and freshwater microalgae, Chlorella pyrenoidosa: toxicity and removal mechanism. Ecotoxicology and Environmental Safety, 191, 110156. https://doi.org/10.1016/j.ecoenv.2019.110156
13. Lopes, M., Nogués, S., & Molero, G. (2011). Gas exchange and chlorophyll fluorescence–principles and applications. Physiological breeding I: interdisciplinary approaches to improve crop adaptation. Mexico, DF: CIMMYT, 79-94.
14. Mugudamani, I., Oke, S. A., Gumede, T. P., & Senbore, S. (2023). Herbicides in water sources: Communicating potential risks to the population of Mangaung Metropolitan Municipality, South Africa. Toxics, 11(6), 538. https://doi.org/10.3390/toxics11060538
15. Onyango, J., van Bruggen, J. J. A., Kitaka, N., Simaika, J., & Irvine, K. (2024). Effects of combined nutrient and pesticide exposure on algal biomass, and Daphnia magna abundance. Environmental Systems Research, 13(1), 1. https://doi.org/10.1186/s40068-023-00326-3
16. Rojano-Delgado, A. M., Priego-Capote, F., Luque de Castro, M. D., & De Prado, R. (2015). Mechanism of imazamox resistance of the Clearfield® wheat cultivar for better weed control. Agronomy for Sustainable Development, 35, 639–648. https://doi.org/10.1007/s13593-014-0232-7
17. Tan, S., Evans, R. R., Dahmer, M. L., Singh, B. K., & Shaner, D. L. (2005). Imidazolinone‐tolerant crops: history, current status and future. Pest Management Science: Formerly Pesticide Science, 61(3), 246-257. https://doi.org/10.1002/ps.993
18. Vonk, J. A., & Kraak, M. H. (2020). Herbicide exposure and toxicity to aquatic primary producers. Reviews of Environmental Contamination and Toxicology Volume 250, 119-171.