THE INVASIVE SPECIES IMPATIENS PARVIFLORA IS REPRESENTED BY A SINGLE HAPLOTYPE OF THE CHLOROPLAST GENOME REGION RPL32-TRNL(UAG) WITHIN THE SECONDARY RANGE

Authors

  • Y.О. TYNKEVICH Yuriy Fedkovych Chernivtsi National University Author
  • K.D. SHYSHKINA Yuriy Fedkovych Chernivtsi National University Author
  • V.V. KARAVAN Yuriy Fedkovych Chernivtsi National University Author
  • R.A. VOLKOV Yuriy Fedkovych Chernivtsi National University Author

DOI:

https://doi.org/10.31861/biosystems2025.03.368

Keywords:

biodiversity, invasive species, genetic barcoding, cpDNA

Abstract

Impatiens parviflora DC. is among the most successful invasive plant species in Central Europe, demonstrating a high capacity for spread in forest ecosystems, where it effectively competes with the native I. noli-tangere. The invasion of this species into Europe began in the 1830s, following its introduction from the highlands of Central Asia into the botanical gardens of Geneva and Dresden. The introduced material is believed to have originated from a single source population. Although populations within the secondary range exhibit pronounced  , their genetic diversity has not yet been comprehensively assessed using DNA barcoding approaches.

The aim of this study was to identify chloroplast haplotypes of I. parviflora from Ukraine and to compare them with haplotypes from other parts of Europe and from the native range. For this purpose, the chloroplast intergenic spacer rpl32–trnL(UAG), known for its high level of polymorphism, was selected as a molecular marker. The rpl32–trnL(UAG) region was sequenced for five accessions from Ukraine and Poland, and an additional 22 sequences retrieved from GenBank were included, representing accessions from the secondary range (Great Britain, russia) and the primary range (Kyrgyzstan, Tajikistan, Turkmenistan).

Comparative analysis of the rpl32–trnL(UAG) sequences revealed the widespread occurrence of a single chloroplast DNA haplotype of I. parviflora across Europe, indicating a pronounced genetic uniformity within the secondary range. In contrast, an additional haplotype exhibiting substantial sequence divergence was detected exclusively within the native range. These results support the hypothesis that European populations of I. parviflora originated from a single geographical source.

Furthermore, phylogenetic analysis demonstrated a close genetic relationship between I. parviflora and another invasive species, I. glandulifera. This finding raises the possibility of interspecific hybridization between these species within the secondary range.

 

References

1. Borchsenius, F., FastGap 1.2, (2009). Department of Biosciences, Aarhus University, Denmark, Published online at http://www.aubot.dk/FastGap_home.htm.

2. Coombe, D. E. (1956). Impatiens parviflora DC. Journal of Ecology, 44(2), 701-713. https://doi.org/10.2307/2256857

3. Davydov D. A. (2023). Impatientetum noli-tangere-parviflorae ass. Nova - a new syntaxon of the ruderal vegetation from the Left-Bank Forest-Steppe zone of Ukraine. Naturalist Almanac (Biological Sciences), (34), 5-13. https://doi.org/10.32999/ksu2524-0838/2023-34-1

4. Dostál, P., Weiser, M., & Koubek, T. (2012). Native jewelweed, but not other native species, displays post‐invasion trait divergence. Oikos, 121(11), 1849-1859. https://doi.org/10.1111/j.1600-0706.2011.20333.x

5. Galera, H., & Sudnik-Wojcikowska, B. (2010). Central European botanic gardens as centres of dispersal of alien plants. Acta Societatis Botanicorum Poloniae, 79(2), 147-156. https://doi.org/10.5586/asbp.2010.020

6. Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular biology and evolution, 30(4), 772-780. https://doi.org/10.1093/molbev/mst010

7. Koniakin, S. M., Burda, R. I., & Budzhak, V. V. (2024). Spatial ratios of native and alien species of vascular plants in forests in the southwest of Kyiv and the adjacent areas. Ukrainian Botanical Journal, 81(5), 322-334. https://doi.org/10.15407/ukrbotj81.05.322

8. Kurose, D., Pollard, K. M., & Ellison, C. A. (2020). Chloroplast DNA analysis of the invasive weed, Himalayan balsam (Impatiens glandulifera), in the British Isles. Scientific Reports, 10(1), 10966. https://doi.org/10.1038/s41598-020-67871-0

9. Li, X., Yang, Y., Henry, R. J., Rossetto, M., Wang, Y., & Chen, S. (2015). Plant DNA barcoding: from gene to genome. Biological Reviews, 90(1), 157-166. https://doi.org/10.1111/brv.12104

10. Minh, B. Q., Schmidt, H. A., Chernomor, O., Schrempf, D., Woodhams, M. D., Von Haeseler, A., & Lanfear, R. (2020). IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Molecular biology and evolution, 37(5), 1530-1534. https://doi.org/10.1101/849372

11. Myśliwy, M., Bosiacka, B., Bosiacki, M., Kupnicka, P., Chlubek, D., & Rewicz, A. (2025). Could alien Impatiens capensis invade habitats of native I. noli-tangere in Europe?–Contrasting effects of microhabitat conditions on species growth and reproduction. NeoBiota, 99, 171-200. https://doi.org/10.3897/neobiota.99.142196

12. Orlov, O. O., Shevera, M. V., & Bronskov, O. I. (2014). Impatiens balfourii (Balsaminaceae), a new alien species of the Ukrainian flora. Ukrainian Botanical Journal, 71(1), 45-49. https://doi.org/10.15407/ukrbotj71.01.045

13. Pires Jr, E. O., Caleja, C., Garcia, C. C., Ferreira, I. C., & Barros, L. (2021). Current status of genus Impatiens: Bioactive compounds and natural pigments with health benefits. Trends in Food Science & Technology, 117, 106-124. https://doi.org/10.1016/j.tifs.2021.01.074

14. Porebski, S., Bailey, L. G., & Baum, B. R. (1997). Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant molecular biology reporter, 15, 8-15. https://doi.org/10.1007/BF02772108

15. POWO. "Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. Published on the Internet; http://www.plantsoftheworldonline.org/Retrieved 25 November 2025.

16. Renčo, M., Jurová, J., & Čerevková, A. (2024). Invasiveness of Impatiens parviflora in Carpathian beech forests: Insights from soil nematode communities.Diversity, 16(7), 393. https://doi.org/10.3390/d16070393

17. Shaw, J., Lickey, E. B., Schilling, E. E., & Small, R. L. (2007). Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. American journal of botany, 94(3), 275-288. https://doi.org/10.3732/ajb.94.3.275

18. Simmons, M. P., & Ochoterena, H. (2000). Gaps as characters in sequence-based phylogenetic analyses. Systematic biology, 49(2), 369-381. https://doi.org/10.1093/sysbio/49.2.369

19. Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: molecular evolutionary genetics analysis version 11. Molecular biology and evolution, 38(7), 3022-3027. https://doi.org/10.1093/molbev/msab120

20. Tynkevich, Y. O., Cherkazianova, A. S., Chorney, I. I., Panchuk, I. I., & Volkov, R. A. (2025b). Genetic polymorphism of invasive species of Knotweed (Reynoutria) assessed by the matK and rpl32-trnL (UAG) regions of chloroplast DNA. Cytology and Genetics, 59(3), 259-269. https://doi.org/10.3103/S0095452725030089

21. Tynkevich, Y. O., Derevenko, T. O., & Chorney, I. I. (2022). Phylogenetic relationships of Ukrainian accessions of Lathyrus venetus (Mill.) Wohlf. and L. vernus (L.) Bernh. based on the analysis of the psbA-trnH region of the chloroplast genome. Scientific Herald of Chernivtsi University. Biology (Biological Systems), 14(1), 135-140. https://doi.org/10.31861/biosystems2022.01.039

22. Tynkevich, Y. O., Hrek, T. S., Olshanskyi, I. G., Panchuk, I. I., & Volkov, R. A. (2024). Genetic polymorphism of the invasive species Impatiens parviflora DC. in Ukraine. Visnik ukrains'kogo tovaristva genetikiv i selekcioneriv, 22(1-2), 10-17. https://doi.org/10.7124/visnyk.utgis.22.1-2.1684

23. Tynkevich, Y. O., Roshka, N. M., Panchuk, I. I., & Volkov, R. A. (2025c). Distribution of two chloroplast haplotypes of the invasive weed himalayan balsam (Impatiens glandulifera) in Ukraine and other European countries. Cytology and Genetics, 59(5), 465-475. https://doi.org/10.3103/S009545272505010X

24. Uchneat, M. (2006). Impatiens. Flower breeding and genetics, 277-299. https://doi.org/10.1007/978-1-4020-4428-1_10

25. Vallé, C., Zellweger, F., Chan, A. H., Li, W., Mapelli, J., & Coomes, D. A. (2025). Heterogeneous effects of drought, land‐use history and local site factors on woodland herb‐layer diversity. Journal of Vegetation Science, 36(6), e70079. https://doi.org/10.1111/jvs.70079

26. Vervoort, A., Cawoy, V., & Jacquemart, A. L. (2011). Comparative reproductive biology in co-occurring invasive and native Impatiens species. International Journal of Plant Sciences, 172(3), 366-377. https://doi.org/10.1086/658152

27. Weiss, V. (2021). The triumphant advance of the small-flowered touch-me-not Impatiens parviflora in Central Europe 1830–2021. Preprint, 1-7.

28. WFO World Flora Online, 2024, Available from: http://www.worldfloraonline.org/ (accessed 25 November 2025)

29. Xue, T., Yu, J., Gadagkar, S. R., Qin, F., Zhang, X., An, M., & Yu, S. (2025). Phylogeny and biogeography of Impatiens sect. Racemosae (Balsaminaceae) based on nrDNA and plastome sequences, emphasizing diversification in the Himalaya and the Hengduan Mountains. Taxon. https://doi.org/10.1002/tax.13352

Downloads


Abstract views: 0

Published

2026-01-08

Issue

Section

БІОХІМІЯ, БІОТЕХНОЛОГІЯ, МОЛЕКУЛЯРНА ГЕНЕТИКА