AGE-RELATED BRADYCARDIC CHANGES AND PRESERVED DAILY AUTONOMIC MODULATION IN CONDITIONALLY HEALTHY MEN BASED ON 24-HOUR HOLTER DATA
DOI:
https://doi.org/10.31861/biosystems2025.03.350Keywords:
heart rate variability, autonomic nervous system, bradycardia, daily modulation, men, age-related changesAbstract
This article presents an assessment of age-related changes in heart rate (HR) and the circadian modulation of heart rate variability (HRV) indices in apparently healthy men across different age categories. A total of 86 individuals aged 18-82 years were examined and stratified according to the WHO classification into four groups: Group 1 (18-43 years, n=17, mean age 30.6 ± 8.5 years), Group 2 (46-59 years, n=19, mean age 55.8 ± 4.2 years), Group 3 (60-72 years, n=35, mean age 65.1 ± 3.7 years), and Group 4 (76-82 years, n=16, mean age 78.1 ± 1.9 years). Ambulatory 24-hour Holter ECG monitoring was performed at MED-SOYUZ LLC (Sumy, Ukraine) using the “CardioSens CS” system (HAI-MEDICA LLC, Kharkiv, Ukraine). Time-domain HRV metrics were analysed – 24-hour mean HR and daytime mRR, SDNNi, RMSSD – together with spectral indices LF, HF, LF/HF and AMo%. Median 24-hour HR across age groups 1–4 was 67.56 (61.75; 73.38), 68.89 (64.22; 73.56), 62.20 (57.53; 66.87) and 58.69 (52.88; 64.50) bpm, respectively, indicating a shift from higher values in younger and middle-aged men (groups 1–2) towards lower rates in older men (groups 3–4). Daytime mRR increased mainly after 60 years of age: 882.19 (800.79; 963.59), 852.58 (770.18; 935.98), 958.31 (876.91; 1039.71) and 1007.19 (909.39; 1104.99) ms in groups 1–4, respectively. SDNNi did not differ significantly between age groups (87.12 (58.82; 115.42), 99.07 (69.77; 128.37), 79.89 (50.59; 109.19) and 97.94 (69.64; 126.24) ms), whereas RMSSD showed a tendency to decrease in group 3 with partial recovery in group 4 (58.56 (32.26; 84.86), 50.83 (24.53; 77.13), 27.49 (1.19; 53.79) and 37.81 (11.51; 64.11) ms). Recordings were segmented into daytime (08:00–22:00) and nighttime (22:00–08:00). Normality was tested with the Shapiro-Wilk test (non-normal distributions for most variables, p < 0.05); between-group comparisons used the Mann-Whitney U test (p < 0.05 for HR and mRR). A pronounced age-related bradycardic trend was found: HR decreased with age (ρ=-0.41; p = 0.0047), while mRR increased (ρ=+0.43; p = 0.0006). Global HRV indices (SDNNi, RMSSD, TP, LF, HF) did not differ significantly between groups (p > 0.16), whereas daily modulation was preserved: LF/HF day > night (p = 0.00055), LF day > night (p = 0.0056), HF night > day (p = 0.073). AMo% showed a weak upward tendency (ρ=+0.13; p > 0.05), and body mass index correlated with a decrease in LF/HF (p = 0.085). Overall, these findings indicate age-related bradycardia without a marked decline in global HRV and with preserved circadian autonomic regulation, suggesting adaptive robustness of the ANS in healthy men and supporting further research into cardiovascular risk.
References
1. Liashenko V. P. & Duvanov D. S. (2025). Moduljacija pokaznykiv variabeljnosti sercevogho rytmu u zhinok starshykh vikovykh ghrup [Modulation of heart rate variability parameters in women of older age groups]. Slobozhansjkyj naukovyj visnyk, Serija: Pryrodnychi nauky [Slobozhanskyi Scientific Bulletin, Series: Natural Sciences], 1, 21-27. https://doi.org/10.32782/naturalspu/2025.1.3. (in Ukrainian).
2. Alyahya, A. I., Charman, S. J., Okwose, N. C., Fuller, A. S., Eggett, C., Luke, P., Bailey, K., MacGowan, G. A., & Jakovljevic, D. G. (2024). Impact of age and sex on heart rate variability and cardiometabolic function in healthy adults. Exp Gerontol, 197, 112591. https://doi.org10.1016/j.exger.2024.112591
3. Asarcikli, L. D., Hayiroglu, M. İ., Osken, A., Keskin, K., Kolak, Z., & Aksu, T. (2022). Heart rate variability and cardiac autonomic functions in post-COVID period. J Interv Card Electrophysiol, 63(3), 715-721. https://doi.org10.1007/s10840-022-01138-8
4. Brozat, M., Böckelmann, I., & Sammito, S. (2025). Systematic Review on HRV Reference Values. Journal of Cardiovascular Development and Disease, 12(6), 214. https://doi.org/10.3390/jcdd12060214
5. Dolphin, H., Dukelow, T., Finucane, C., Commins, S., McElwaine, P., & Kennelly, S. P. (2022). «The Wandering Nerve Linking Heart and Mind» - The Complementary Role of Transcutaneous Vagus Nerve Stimulation in Modulating Neuro-Cardiovascular and Cognitive Performance. Frontiers in Neuroscience, 16, 897303. https://doi.org/10.3389/fnins.2022.897303
6. Geovanini, G. R., Vasques, E. R., Alvim R. O., & Mill, J. G. (2020). Age and sex differences in heart rate variability and vagal specific patterns – Baependi Heart Study. Global Heart, 15(1):71, 1-12. https://doi.org/10.5334/gh.873
7. Gibbons, J.D., & Chakraborti, S. (2020). Nonparametric Statistical Inference. 6th ed. Chapman and Hall/CRC. https://doi.org/10.1201/9781315110479
8. Kelters, I. R., Koop, Y., Young, M. E., Daiber, A., & van Laake, L. W. (2025). Circadian rhythms in cardiovascular disease. Eur Heart J, 22, 46(36), 3532-3545. https://doi.org10.1093/eurheartj/ehaf367
9. Kunikullaya, U. K., Kunnavil, R., Vijayadas, Goturu, J., Prakash, V. S., & Murthy, N. S. (2021). Normative data and gender differences in heart rate variability in the healthy young individuals aged 18-30 years, a South Indian cross-sectional study. Indian Pacing Electrophysiol J, 21(2), 112-119. https://doi.org10.1016/j.ipej.2021.01.002
10. Lee, E.J., & Keller-Ross, M.L. (2025). Menopause and its effects on autonomic regulation of blood pressure: Insights and perspectives. Autonomic Neuroscience, 260, 103295. https://doi.org/10.1016/j.autneu.2025.103295
11. Lee, S. J., Kim, C. H., Jeong, S. J., Yun, J. S., Won, J. C., Lee, J. H., Park, I. B., Lee, C. W., Kwon, H. S., & Park, T. S. (2025). Clinical Characteristics and Epidemiology of Cardiovascular Autonomic Neuropathy in Peoples With Long-Standing Diabetes. J Korean Med Sci, 21, 40(28), e154. https://doi.org10.3346/jkms.2025.40.e154
12. Malik, M., Bigger, J.T., Camm, A. J., Kleiger R. E., Malliani, A., Moss, A. J. & Schwartz, P. J. (1996). Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology, & the North American Society of Pacing and Electrophysiology. European Heart Journal, 17(3), 354–381. https://doi.org/10.1093/oxfordjournals.eurheartj.a014868
13. Rastović, M., Srdić-Galić, B., Barak, O., Stokić, E., & Polovina S. (2019). Aging, heart rate variability and metabolic impact of obesity. Acta Clin Croat, 58(3), 430-438. https://doi.org10.20471/acc.2019.58.03.05
14. Rodgers, J. L., Jones, J., Bolleddu, S. I., Vanthenapalli, S., Rodgers, L. E., Shah, K., Karia, K., & Panguluri, S. K. (2019). Cardiovascular Risks Associated with Gender and Aging. Journal of cardiovascular development and disease, 6(2), 19. https://doi.org/10.3390/jcdd6020019
15. Sammito, S., Thielmann, B., & Böckelmann, I. (2024). Update: Factors influencing heart rate variability – A narrative review. Frontiers in Physiology, 15(1430458), 1-8. https://doi.org/10.3389/fphys.2024.1430458
16. Shen, Y., Fang, Z., Zhang, T., Yu, F., Xu, Y., & Yang L. (2025). Heart rate variability with circadian rhythm removed achieved high accuracy for stress assessment across all times throughout the day. Front. Physiol, 16, 1535331. https://doi.org10.3389/fphys.2025.1535331
17. Sundas, A., Contreras, I., Navarro-Otano, J., Soler, J., Beneyto, A., & Vehi, J. (2025). Heart rate variability over the decades: a scoping review. PeerJ, 29, 13, e19347. https://doi.org10.7717/peerj.19347
18. Tanriover, C., Copur, S., Mutlu, A., Peltek, I. B., Galassi, A., Ciceri, P., Cozzolino, M., & Kanbay, M. (2023). Early aging and premature vascular aging in chronic kidney disease. Clin Kidney J, 6, 16(11), 1751-1765. https://doi.org10.1093/ckj/sfad076
19. United Nations, Department of Economic and Social Affairs, Population Division (2020). World Population Ageing 2019. https://www.un.org/en/development/desa/population/publications/pdf/ageing/WorldPopulationAgeing2019-Report.pdf