BIOCHEMICAL ASPECTS OF INTERPRETING OXIDATIVE PROCESS INTENSITY IN THE LIVER OF RATS WITH ACETAMINOPHEN-INDUCED INJURY AFTER PARTIAL HEPATECTOMY
DOI:
https://doi.org/10.31861/biosystems2025.03.333Keywords:
metallothioneins, protein SH-group, carbonyl derivatives, partial hepatectomy, acetaminophen, toxic injury, liver regeneration, liverAbstract
Impaired liver regeneration after partial hepatectomy under conditions of prior toxic injury is a relevant problem in experimental and clinical biochemistry. Previous acetaminophen-induced injury creates an unfavorable redox environment for hepatic parenchymal restoration. In this context, particular importance is attached to the study of metallothioneins as redox-active, thiol-containing proteins, as well as indicators of oxidative protein modification, which reflect the intensity and direction of oxidative processes within the cell. Our study is devoted to the assessment of the content of metallothioneins and the degree of oxidative protein modification in the mitochondrial and cytosolic fractions of rat liver subjected to partial hepatectomy after acetaminophen intoxication. The experiments were performed on white outbred rats divided into two groups: animals that underwent partial hepatectomy by the Mitchell and Willenbring method (C/PH) and animals that underwent two-thirds liver resection after acute paracetamol-induced injury, modeled by intragastric administration of the xenobiotic at a dose of 1250 mg/kg body weight once daily for two days in the form of a 2% starch gel suspension (TI/PH). Tissue sampling was performed at 24, 48, 72, and 168 h after surgical intervention. The content of metallothioneins and the levels of protein carbonylation and free SH groups were assessed using spectrophotometric biochemical methods. The results of the study showed that in animals with partial hepatectomy after toxic injury caused by acetaminophen, the level of metallothioneins in the liver's cytosolic fraction increases throughout the entire regeneration period. At the same time, progressive depletion of the thiol pool and an increase in protein carbonylation levels were recorded in the mitochondrial fraction, indicating the predominance of pro-oxidant processes. The enhancement of oxidative protein modification was accompanied by a decrease in the content of free SH groups, which is consistent with a disturbance of redox balance and depletion of the thiol-disulfide system. Interpretation of the obtained results indicates that the intensity of oxidative processes in the regenerating liver after acetaminophen-induced injury is determined by the compartment-specific interaction between the metallothionein system and the thiol status of proteins. The identified changes have important theoretical significance for understanding the molecular mechanisms of liver regeneration and may be used for the biochemical interpretation of the state of regenerating parenchyma under toxic injury.
References
1. Allen, F. M., Costa, A. S. H., Gruszczyk, A. V., Bates, G. R., Prag, H. A., Nikitopoulou, E., Viscomi, C., Frezza, C., James, A. M., & Murphy, M. P. (2023). Rapid fractionation of mitochondria from mouse liver and heart reveals in vivo metabolite compartmentation. FEBS letters, 597(2), 246–261. https://doi.org/10.1002/1873-3468.14511
2. Aryal, B., Jeong, J., & Rao, V. A. (2014). Doxorubicin-induced carbonylation and degradation of cardiac myosin binding protein C promote cardiotoxicity. Proc Natl Acad Sci U S A, 111(5), 2011–2016. https://doi.org/10.1073/pnas.1321783111
3. Aziz, J., Rahman, M. T., & Vaithilingam, R. D. (2021). Dysregulation of metallothionein and zinc aggravates periodontal diseases. Journal of trace elements in medicine and biology : organ of the Society for Minerals and Trace Elements (GMS), 66, 126754. https://doi.org/10.1016/j.jtemb.2021.126754
4. Cohen, J. T., Charpentier, K. P., & Beard, R. E. (2019). An Update on Iatrogenic Biliary Injuries: Identification, Classification, and Management. The Surgical clinics of North America, 99(2), 283–299. https://doi.org/10.1016/j.suc.2018.11.006
5. Collin de l'Hortet, A., Takeishi, K., Guzman-Lepe, J., Handa, K., Matsubara, K., Fukumitsu, K., Dorko, K., Presnell, S. C., Yagi, H., & Soto-Gutierrez, A. (2016). Liver-Regenerative Transplantation: Regrow and Reset. American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons, 16(6), 1688–1696. https://doi.org/10.1111/ajt.13678
6. Cremers, C. M., & Jakob, U. (2013). Oxidant sensing by reversible disulfide bond formation. The Journal of biological chemistry, 288(37), 26489–26496. https://doi.org/10.1074/jbc.R113.462929
7. Domán, A., Dóka, É., Garai, D., Bogdándi, V., Balla, G., Balla, J., & Nagy, P. (2023). Interactions of reactive sulfur species with metalloproteins. Redox Biol, 60, 102617.
https://doi.org/10.1016/j.redox.2023.102617
8. Estévez, M., Díaz-Velasco, S., & Martínez, R. (2022). Protein carbonylation in food and nutrition: a concise update. Amino acids, 54(4), 559–573. https://doi.org/10.1007/s00726-021-03085-6
9. Goltsev, A. M., Bondarovych, M. O., Gaevska, Y. O., Babenko, N. M., Dubrava, T. G., & Ostankov, M. V. (2024). The role of reactive oxygen species in the implementation of the anti-tumor effect of nanocomplexes based on GdEuVO₄ nanoparticles and cholesterol. Innov Biosyst Bioeng, 8(2), 28–37. https://doi.org/10.20535/ibb.2024.8.2.295581
10. Gonos, E. S., Kapetanou, M., Sereikaite, J., Bartosz, G., Naparło, K., Grzesik, M., & Sadowska-Bartosz, I. (2018). Origin and pathophysiology of protein carbonylation, nitration and chlorination in age-related brain diseases and aging. Aging, 10(5), 868–901. https://doi.org/10.18632/aging.101450
11. Hayward, L., & Baud, M. G. J. (2025). Cysteine sulfinic acid and sulfinylated peptides. RSC chemical biology, 6(7), 1019–1033.
https://doi.org/10.1039/d5cb00040h
12. Holendova, B., & Plecita-Hlavata, L. (2023). Cysteine residues in signal transduction and its relevance in pancreatic beta cells. Frontiers in endocrinology, 14, 1221520. https://doi.org/10.3389/fendo.2023.1221520
13. Jia, C., Li, H., Wen, N., Chen, J., Wei, Y., & Li, B. (2018). Laparoscopic liver resection: a review of current indications and surgical techniques. Hepatobiliary surgery and nutrition, 7(4), 277–288. https://doi.org/10.21037/hbsn.2018.03.01
14. Jomova, K., Alomar, S. Y., Alwasel, S. H., et al. (2024). Several lines of antioxidant defense against oxidative stress: antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants. Arch Toxicol, 98, 1323–1367.
https://doi.org/10.1007/s00204-024-03696-4
15. Juárez-Rebollar, D., Rios, C., Nava-Ruíz, C., & Méndez-Armenta, M. (2017). Metallothionein in Brain Disorders. Oxidative medicine and cellular longevity, 2017, 5828056.
https://doi.org/10.1155/2017/5828056
16. Kamath, S. A., & Narayan, K. A. (1972). Interaction of Ca2+ with endoplasmic reticulum of rat liver: a standardized procedure for the isolation of rat liver microsomes. Analytical biochemistry, 48(1), 53–61. https://doi.org/10.1016/0003-2697(72)90169-8
17. Kopylchuk, H. P., Nykolaichuk, I. M., & Ursatyi, M. S. (2025). Cytochrome P450 enzymes activity in rat liver under conditions of toxic injury and partial hepatectomy. Ukr Biochem J, 97(2), 48–58. https://doi.org/10.15407/ubj97.02.048
18. Li, M., Liu, Y., Wei, Y., Wu, C., Meng, H., Niu, W., Zhou, Y., Wang, H., Wen, Q., Fan, S., Li, Z., Li, X., Zhou, J., Cao, K., Xiong, W., Zeng, Z., Li, X., Qiu, Y., Li, G., & Zhou, M. (2019). Zinc-finger protein YY1 suppresses tumor growth of human nasopharyngeal carcinoma by inactivating c-Myc-mediated microRNA-141 transcription. The Journal of biological chemistry, 294(15), 6172–6187. https://doi.org/10.1074/jbc.RA118.006281
19. Li, R., Wu, H., Xu, Y., Xu, X., Xu, Y., Huang, H., Lv, X., Liao, C., Ye, J., & Li, H. (2025). Underlying mechanisms and treatment of acetaminophen induced liver injury (Review). Molecular medicine reports, 31(4), 106. https://doi.org/10.3892/mmr.2025.13471
20. Ling, A., Schultz, K. R., Knight, J. D., Shearn, C. T., & Baumel-Alterzon, S. (2025). Scars of oxidative stress: protein carbonylation and beta cell dysfunction in diabetes. Front Endocrinol, 16, 1722623.
https://doi.org/10.3389/fendo.2025.1722623
21. Luo, G., Huang, L., & Zhang, Z. (2023). The molecular mechanisms of acetaminophen-induced hepatotoxicity and its potential therapeutic targets. Experimental biology and medicine (Maywood, N.J.), 248(5), 412–424.
https://doi.org/10.1177/15353702221147563
22. Manful, C. F., Fordjour, E., Subramaniam, D., Sey, A. A., Abbey, L., & Thomas, R. (2025). Antioxidants and Reactive Oxygen Species: Shaping Human Health and Disease Outcomes. International Journal of Molecular Sciences, 26(15), 7520.
https://doi.org/10.3390/ijms26157520
23. Marikar, F., & Zi-Chun, H. (2023). Metal-binding protein: Metallothionein. Int J Med Biochem, 6(1), 57–62. https://doi.org/10.14744/ijmb.2022.94834
24. Markose, D., Kirkland, P., Ramachandran, P., & Henderson, N. C. (2018). Immune cell regulation of liver regeneration and repair. J Immunol Regen Med, 2, 1–10. https://doi.org/10.1016/j.regen.2018.03.003
25. Mohammed, O., Tufa, A., & Gizaw, S. T. (2025). Emerging Roles of Metallothioneins in Human Pathophysiology: A Review. Health science reports, 8(9), e71279. https://doi.org/10.1002/hsr2.71279
26. Murphy, M. E., & Kehrer, J. P. (1989). Oxidation state of tissue thiol groups and content of protein carbonyl groups in chickens with inherited muscular dystrophy. The Biochemical journal, 260(2), 359–364. https://doi.org/10.1042/bj2600359
27. Nagasawa, T., Hayashi, H., Fujimaki, N., Nishizawa, N., & Kitts, D. D. (2000). Induction of oxidatively modified proteins in skeletal muscle by electrical stimulation and its suppression by dietary supplementation of (-)-epigallocatechin gallate. Bioscience, biotechnology, and biochemistry, 64(5), 1004–1010. https://doi.org/10.1271/bbb.64.1004
28. Nyström T. (2005). Role of oxidative carbonylation in protein quality control and senescence. The EMBO journal, 24(7), 1311–1317. https://doi.org/10.1038/sj.emboj.7600599
29. Percio, A., Cicchinelli, M., Masci, D., Summo, M., Urbani, A., & Greco, V. (2024). Oxidative Cysteine Post Translational Modifications Drive the Redox Code Underlying Neurodegeneration and Amyotrophic Lateral Sclerosis. Antioxidants (Basel, Switzerland), 13(8), 883. https://doi.org/10.3390/antiox13080883
30. Pham, T. K., Buczek, W. A., Mead, R. J., Shaw, P. J., & Collins, M. O. (2021). Proteomic approaches to study cysteine oxidation: Applications in neurodegenerative diseases. Front Mol Neurosci, 14, 678837.
https://doi.org/10.3389/fnmol.2021.678837
31. Ruttkay-Nedecky, B., Nejdl, L., Gumulec, J., Zitka, O., Masarik, M., Eckschlager, T., Stiborova, M., Adam, V., & Kizek, R. (2013). The role of metallothionein in oxidative stress. International journal of molecular sciences, 14(3), 6044–6066. https://doi.org/10.3390/ijms14036044
32. Smith, P. J., Wiltshire, M., Furon, E., Beattie, J. H., & Errington, R. J. (2008). Impact of overexpression of metallothionein-1 on cell cycle progression and zinc toxicity. American journal of physiology. Cell physiology, 295(5), C1399–C1408. https://doi.org/10.1152/ajpcell.00342.2008
33. Stair, E. R., & Hicks, L. M. (2023). Recent advances in mass spectrometry-based methods to investigate reversible cysteine oxidation. Current opinion in chemical biology, 77, 102389. https://doi.org/10.1016/j.cbpa.2023.102389
34. Subramanian Vignesh, K., & Deepe, G. S., Jr (2017). Metallothioneins: Emerging Modulators in Immunity and Infection. International journal of molecular sciences, 18(10), 2197.
https://doi.org/10.3390/ijms18102197
35. Tsomaia, K., Patarashvili, L., Karumidze, N., Bebiashvili, I., Azmaipharashvili, E., Modebadze, I., Dzidziguri, D., Sareli, M., Gusev, S., & Kordzaia, D. (2020). Liver structural transformation after partial hepatectomy and repeated partial hepatectomy in rats: A renewed view on liver regeneration. World journal of gastroenterology, 26(27), 3899–3916. https://doi.org/10.3748/wjg.v26.i27.3899
36. Tsudzevich, B. O., & Kalinin, I. V. (2011). Metal-binding capacity of metallothioneins of the liver of rats poisoned with heavy metals. Ukrainian Biochemical Journal, 83(4), 108–112.
37. van de Laarschot, L. F., Jansen, P. L., Schaap, F. G., & Olde Damink, S. W. (2016). The role of bile salts in liver regeneration. Hepatology international, 10(5), 733–740. https://doi.org/10.1007/s12072-016-9723-8
38. Verhoef, J. N. C., Allen, A. L., Harding, J. C. S., & Al-Dissi, A. N. (2018). Metallothionein Expression in Horses With Chronic Liver Disease and Its Correlation With Ki-67 Immunoreactivity. Veterinary pathology, 55(5), 703–710. https://doi.org/10.1177/0300985818777802
39. Yang, M., & Silverstein, R. L. (2024). Targeting Cysteine Oxidation in Thrombotic Disorders. Antioxidants, 13(1), 83. https://doi.org/10.3390/antiox13010083
40. Yang, R., Roshani, D., Gao, B., Li, P., & Shang, N. (2024). Metallothionein: A Comprehensive Review of Its Classification, Structure, Biological Functions, and Applications. Antioxidants, 13(7), 825. https://doi.org/10.3390/antiox13070825