THE ROLE OF BIOPREPARATIONS IN COMPENSATING FOR VEGETATION DEFICIT AND THE ECONOMIC EFFICIENCY OF LATE SOWING OF WINTER WHEAT
DOI:
https://doi.org/10.31861/biosystems2025.02.302Keywords:
, Calcaric Fluvisols, winter wheat, late sowing dates, microbial biopreparations, economic efficiency, biodecomposition, stress compensation, soil biological activity, BTU, Mycofriend, Groundfix, EcosternAbstract
The aim of the study was to evaluate the effectiveness of the integrated application of multifunctional microbial biopreparations (in particular Mycofriend, Groundfix, and Ecostern) in compensating for physiological limitations and improving the economic efficiency of winter wheat (Triticum aestivum L., cultivar Patras DSV) under conditions of late, suboptimal sowing (30 October) following soybean.
It was established that biological intensification resulted in a significant acceleration of phenological development (heading occurring 7 days earlier) and an improvement in morphogenesis (a 2–4-fold increase in tillering and a 22% increase in root system development). The applied biopreparation complex ensured a positive transformation of soil nutrition (a significant increase in the content of available phosphorus) and a 3–5-fold increase in soil biological activity. A biocontrol effect was also recorded, manifested in a reduced incidence of fungal diseases (yellow rust and Pyrenophora leaf spot).
The key conclusion is the demonstrated critical role of the biodecomposer (Ecostern) within the complex. In the treatment without this component, the economic effect was negative (–279 UAH/ha), whereas the integrated application (with the biodecomposer) provided a substantial positive economic effect (+1,654.56 UAH/ha), confirming its necessity for converting biological activity into an economic equivalent.
References
1. Al-Karaki, G. N., McMichael, B., & Zak, J. (2004). Field response of wheat to arbuscular mycorrhizal fungi and drought stress. Mycorrhiza, 14(4), 263–269. https://doi.org/10.1007/s00572-003-0265-2
2. Brundrett, M. C. (2002). Coevolution of roots and mycorrhizas of land plants. New Phytologist, 154(2), 275–304. https://doi.org/10.1046/j.1469-8137.2002.00397.x
3. Foley, J. A., Ramankutty, N., Brauman, K. A., et al. (2011). Solutions for a cultivated planet. Nature, 478, 337–342. https://doi.org/10.1038/nature10452
4. Raklami, A., Bechtaoui, N., Tahiri, A., et al. (2021). Co-inoculation with plant growth-promoting rhizobacteria and mycorrhizae improves wheat yield. Frontiers in Agronomy, 3, 734923. https://doi.org/10.3389/fagro.2021.734923
5. Reynolds, M., Foulkes, M. J., Slafer, G. A., et al. (2009). Raising yield potential in wheat. Journal of Experimental Botany, 60(7), 1899–1918. https://doi.org/10.1093/jxb/erp016
6. Richardson, A. E., Barea, J. M., McNeill, A. M., & Prigent-Combaret, C. (2009). Acquisition of phosphorus and nitrogen in the rhizosphere. Plant and Soil, 321, 305–339. https://doi.org/10.1007/s11104-009-9895-2
7. Six, J., Frey, S. D., Thiet, R. K., & Batten, K. M. (2006). Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Science Society of America Journal, 70(2), 555–569. https://doi.org/10.2136/sssaj2004.0347
8. Smith, S. E., & Read, D. J. (2008). Mycorrhizal Symbiosis (3rd ed.). Academic Press. https://doi.org/10.1016/B978-0-12-370526-6.X5001-6
9. Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R., & Polasky, S. (2002). Agricultural sustainability and intensive production practices. Nature, 418, 671–677. https://doi.org/10.1038/nature01014
10. Wahab, A., et al. (2023). Role of arbuscular mycorrhizal fungi in regulating plant growth under abiotic stress. Plants, 12(17), 3102. https://doi.org/10.3390/plants12173102
11. Нікорич В.А, Цвик Т.І., Гуцул Т.В.. Демид І.Е. (2025). Дерново-борові ґрунти першої надзаплавної тераси річки прут (на прикладі біобази" жучка"): морфологія, властивості та таксономія. Науковий вісник Чернівецького університету. Біологія (Біологічні системи), 17(1), 189-198. https://doi.org/10.31861/biosystems2025.01.189
12. ДСТУ 4114-2002 Якість ґрунту. Визначання рухомих сполук фосфору і калію (метод Мачигіна).
13. ДСТУ ISO 10381-1:2004 Якість ґрунту.Відбирання проб. Програми відбирання.
14. ДСТУ ISO 10390:2007 Якість ґрунту.Визначення pH ґрунту.
15. ДСТУ ISO 11464:2007 Якість ґрунту.Попереднє обробляння зразків для фізико-хімічного аналізу.
16. ДСТУ 4289:2004 Якість ґрунту. Методи визначання органічної речовини в ґрунті.
17. ДСТУ 7863:2015 Якість ґрунту. Визначення легкогідролізного азоту (метод Корнфілда).