BIOCHEMICAL BASIS FOR THE INTERPRETATION OF CHANGES IN PLATELET INDICES UNDER CONDITIONS OF ALIMENTARY PROTEIN DEFICIENCY AND TOXIC INJURY INDUCED BY ACETAMINOPHEN
DOI:
https://doi.org/10.31861/biosystems2025.02.260Keywords:
platelets, plateletcrit, mean platelet volume, platelet distribution width, hemostasis, low-protein diet, acetaminophen, toxic injuryAbstract
The work is devoted to elucidating the biochemical mechanisms and patterns of changes in platelet indices under conditions of dietary protein deficiency and acetaminophen-induced toxic injury. The relevance of the study is determined by the prevalence of nutrient-associated disorders and drug-induced hepatopathies, which are accompanied by systemic alterations in hemostasis, particularly of the primary platelet component. Particular attention is paid to platelet indices as integral markers of the morphofunctional state of platelets, the activity of thrombocytopoiesis, and platelet reactivity. The study was conducted on white outbred rats aged 2.5–3 months, in which alimentary protein deficiency was modeled by maintaining them on a semi-synthetic low-protein diet for 28 days, as well as acute acetaminophen-induced toxic injury at a dose of 1250 mg/kg body weight. Platelet count was determined in peripheral blood smears stained according to the Romanowsky–Giemsa method, whereas mean platelet volume, platelet distribution width, and plateletcrit were assessed using a hematological analyzer. The results of the study demonstrated the development of pronounced thrombocytopenia in all experimental groups, most intense under conditions of acetaminophen-induced toxic injury. The decrease in platelet count was accompanied by a significant reduction in plateletcrit against the background of an increase in mean platelet volume and platelet distribution width. Morphological analysis of blood smears confirmed the presence of giant platelet aggregates and increased platelet heterogeneity, indicating platelet activation and disturbances in the thrombocytopoiesis process. The obtained results allow us to conclude that acetaminophen-induced injury is a key factor in the imbalance of the platelet component of hemostasis, while dietary protein deficiency enhances the extent of these changes. The identified pattern of alterations in platelet indices has a clear biochemical basis and may be used for an in-depth laboratory assessment of the hemostatic state under metabolically unfavorable conditions.
References
1. Armant, M. A., & Fenton, M. J. (2002). Toll-like receptors: a family of pattern-recognition receptors in mammals. Genome biology, 3(8), REVIEWS3011. https://doi.org/10.1186/gb-2002-3-8-reviews3011
2. Assinger A. (2014). Platelets and infection - an emerging role of platelets in viral infection. Frontiers in immunology, 5, 649. https://doi.org/10.3389/fimmu.2014.00649
3. Balduini, A., Malara, A., Balduini, C. L., & Noris, P. (2011). Megakaryocytes derived from patients with the classical form of Bernard-Soulier syndrome show no ability to extend proplatelets in vitro. Platelets, 22(4), 308–311. https://doi.org/10.3109/09537104.2010.547960
4. Budak, Y. U., Polat, M., & Huysal, K. (2016). The use of platelet indices, plateletcrit, mean platelet volume and platelet distribution width in emergency non-traumatic abdominal surgery: a systematic review. Biochemia medica, 26(2), 178–193. https://doi.org/10.11613/BM.2016.020
5. Cunha, M. C., Lima, F. daS., Vinolo, M. A., Hastreiter, A., Curi, R., Borelli, P., & Fock, R. A. (2013). Protein malnutrition induces bone marrow mesenchymal stem cells commitment to adipogenic differentiation leading to hematopoietic failure. PloS one, 8(3), e58872. https://doi.org/10.1371/journal.pone.0058872
6. Dhakar, S., Diwaker, P., Gogoi, P., Singh, B., & Kumar, S. (2018). Platelet count estimation using unstained and stained peripheral blood smears: A comparative study. Journal of Clinical and Diagnostic Research, 12(7), 14–16. https://doi.org/10.7860/JCDR/2018/35640.11816
7. Ed Rainger, G., Chimen, M., Harrison, M. J., Yates, C. M., Harrison, P., Watson, S. P., Lordkipanidzé, M., & Nash, G. B. (2015). The role of platelets in the recruitment of leukocytes during vascular disease. Platelets, 26(6), 507–520. https://doi.org/10.3109/09537104.2015.1064881
8. Eisinger, F., Patzelt, J., & Langer, H. F. (2018). The Platelet Response to Tissue Injury. Frontiers in medicine, 5, 317. https://doi.org/10.3389/fmed.2018.00317
9. Ganey, P. E., Luyendyk, J. P., Newport, S. W., Eagle, T. M., Maddox, J. F., Mackman, N., & Roth, R. A. (2007). Role of the coagulation system in acetaminophen-induced hepatotoxicity in mice. Hepatology (Baltimore, Md.), 46(4), 1177–1186. https://doi.org/10.1002/hep.21779
10. Gernsheimer T. (2008). Epidemiology and pathophysiology of immune thrombocytopenic purpura. European Journal of Haematology, 80(s69), 3–8. https://doi.org/10.1111/j.1600-0609.2007.00998.x
11. Hastreiter, A. A., Dos Santos, G. G., Makiyama, E. N., Santos, E. W. C., Borelli, P., & Fock, R. A. (2021). Effects of protein malnutrition on hematopoietic regulatory activity of bone marrow mesenchymal stem cells. The Journal of nutritional biochemistry, 93, 108626. https://doi.org/10.1016/j.jnutbio.2021.108626
12. Heemskerk, J. W., Mattheij, N. J., & Cosemans, J. M. (2013). Platelet-based coagulation: different populations, different functions. Journal of thrombosis and haemostasis: JTH, 11(1), 2–16. https://doi.org/10.1111/jth.12045
13. Kerr, R., Newsome, P., Germain, L., Thomson, E., Dawson, P., Stirling, D., & Ludlam, C. A. (2003). Effects of acute liver injury on blood coagulation. Journal of thrombosis and haemostasis: JTH, 1(4), 754–759. https://doi.org/10.1046/j.1538-7836.2003.00194.x
14. Khodadi, E. (2020). Platelet function in cardiovascular disease: Activation of molecules and activation by molecules. Cardiovascular Toxicology, 20(1), 1–10. https://doi.org/10.1007/s12012-019-09555-4
15. Kopylchuk, H. P., Nykolaichuk, I. M., & Ursatyi, M. S. (2022). Effect of dietary protein deficiency on the activity of cytochrome P450 enzyme systems in the liver of rats of reproductive age under acetaminophen-induced injury. Acta Scientific Gastrointestinal Disorders, 5(4), 39–48. https://doi.org/10.31080/ASGIS.2022.05.0402
16. Kopylchuk, H. P., Nykolaichuk, I. M., & Ursatyi, M. S. (2025). Cytochrome P450 enzymes activity in rat liver under conditions of toxic injury and partial hepatectomy. Ukr Biochem J, 97(2), 48–58. https://doi.org/10.15407/ubj97.02.048
17. Korniluk, A., Koper-Lenkiewicz, O. M., Kamińska, J., Kemona, H., & Dymicka-Piekarska, V. (2019). Mean Platelet Volume (MPV): New Perspectives for an Old Marker in the Course and Prognosis of Inflammatory Conditions. Mediators of inflammation, 2019, 9213074. https://doi.org/10.1155/2019/9213074
18. Koupenova, M., Clancy, L., Corkrey, H. A., & Freedman, J. E. (2018). Circulating Platelets as Mediators of Immunity, Inflammation, and Thrombosis. Circulation research, 122(2), 337–351. https://doi.org/10.1161/CIRCRESAHA.117.310795
19. Kuter D. J. (2013). The biology of thrombopoietin and thrombopoietin receptor agonists. International journal of hematology, 98(1), 10–23. https://doi.org/10.1007/s12185-013-1382-0
20. Levin, J. (2019). The evolution of mammalian platelets. In A. D. Michelson (Ed.), Platelets (4th ed., pp. 1–23). Academic Press. https://doi.org/10.1016/B978-0-12-813456-6.00001-1
21. Leysi-Derilou, Y., Duchesne, C., Garnier, A., & Pineault, N. (2012). Single-cell level analysis of megakaryocyte growth and development. Differentiation; research in biological diversity, 83(4), 200–209. https://doi.org/10.1016/j.diff.2011.12.003
22. Machlus, K. R., & Italiano, J. E., Jr (2013). The incredible journey: From megakaryocyte development to platelet formation. The Journal of cell biology, 201(6), 785–796. https://doi.org/10.1083/jcb.201304054
23. Manary, M. J., Wegner, D. R., & Maleta, K. (2024). Protein quality malnutrition. Frontiers in nutrition, 11, 1428810. https://doi.org/10.3389/fnut.2024.1428810
24. Maouia, A., Rebetz, J., Kapur, R., & Semple, J. W. (2020). The Immune Nature of Platelets Revisited. Transfusion medicine reviews, 34(4), 209–220. https://doi.org/10.1016/j.tmrv.2020.09.005
25. Nieswandt, B., Pleines, I., & Bender, M. (2011).
Platelet adhesion and activation mechanisms in arterial thrombosis and ischemic stroke. Journal of Thrombosis and Haemostasis, 9(S1), 92–104.
https://doi.org/10.1111/j.1538-7836.2011.04361.x
26. Provan, D., Stasi, R., Newland, A. C., Blanchette, V. S., Bolton-Maggs, P., Bussel, J. B., Chong, B. H., Cines, D. B., Gernsheimer, T. B., Godeau, B., Grainger, J., Greer, I., Hunt, B. J., Imbach, P. A., Lyons, G., McMillan, R., Rodeghiero, F., Sanz, M. A., Tarantino, M., Watson, S., Young, J., & Kuter, D. J. (2010). International consensus report on the investigation and management of primary immune thrombocytopenia. Blood, 115(2), 168–186. https://doi.org/10.1182/blood-2009-06-225565
27. Ramachandran, A., & Jaeschke, H. (2019). Acetaminophen Hepatotoxicity. Seminars in liver disease, 39(2), 221–234. https://doi.org/10.1055/s-0039-1679919
28. Reeves, P. G., Nielsen, F. H., & Fahey, G. C. (1993). AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. The Journal of nutrition, 123(11), 1939–1951. https://doi.org/10.1093/jn/123.11.1939
29. Rong, N., Li, Z. W., Yuan, J., Shao, Z. M., Deng, Y., Zhu, D. S., & Sun, Z. W. (2024). The Role of Platelet Distribution Width in the Association Between Blood Glucose and Neurological Impairment Severity in Acute Ischemic Stroke: A Moderated Mediation Model. Journal of inflammation research, 17, 6039–6050. https://doi.org/10.2147/JIR.S471841
30. Rossaint, J., Margraf, A., & Zarbock, A. (2018). Role of Platelets in Leukocyte Recruitment and Resolution of Inflammation. Frontiers in immunology, 9, 2712. https://doi.org/10.3389/fimmu.2018.02712
31. Sivagurunathan, N., & Calivarathan, L. (2025). Inflammasome activation as a key driver of acetaminophen-induced hepatotoxicity: Mechanisms and emerging therapeutics. Gene Expression, 24(3), 235–249. https://doi.org/10.14218/GE.2025.00001
32. Smock, K. J., & Perkins, S. L. (2014). Thrombocytopenia: an update. International journal of laboratory hematology, 36(3), 269–278. https://doi.org/10.1111/ijlh.12214
33. Thomas, S., Kelliher, S., & Krishnan, A. (2024). Heterogeneity of platelets and their responses. Research and practice in thrombosis and haemostasis, 8(2), 102356. https://doi.org/10.1016/j.rpth.2024.102356
34. Thon, J. N., Macleod, H., Begonja, A. J., Zhu, J., Lee, K. C., Mogilner, A., Hartwig, J. H., & Italiano, J. E. (2012). Microtubule and cortical forces determine platelet size during vascular platelet production. Nature Communications, 3, 852. https://doi.org/10.1038/ncomms1838
35. Tian, Y., Zong, Y., Pang, Y., Zheng, Z., Ma, Y., Zhang, C., & Gao, J. (2025). Platelets and diseases: Signal transduction and advances in targeted therapy. Signal Transduction and Targeted Therapy, 10, 159. https://doi.org/10.1038/s41392-025-02198-8
36. Tokgöz Çakır, B., Aktemur, G., Karabay, G., Şeyhanlı, Z., Çetin, S., Filiz, A. A., Vanlı Tonyalı, N., & Çağlar, A. T. (2025). Evaluation of Platelet Indices and Inflammation Markers in Preeclampsia. Journal of clinical medicine, 14(5), 1406. https://doi.org/10.3390/jcm14051406
37. Tuna, R., Yi, W., Crespo Cruz, E., Romero, J. P., Ren, Y., Guan, J., Li, Y., Deng, Y., Bluestein, D., Liu, Z. L., & Sheriff, J. (2024). Platelet Biorheology and Mechanobiology in Thrombosis and Hemostasis: Perspectives from Multiscale Computation. International journal of molecular sciences, 25(9), 4800. https://doi.org/10.3390/ijms25094800
38. Uner, A., Calişkan, U., Oner, A. F., Koç, H., & Kasap, A. F. (2001). Platelet functions in patients with protein-energy malnutrition. Clinical and applied thrombosis/hemostasis: official journal of the International Academy of Clinical and Applied Thrombosis/Hemostasis, 7(4), 286–288. https://doi.org/10.1177/107602960100700406
39. Zhu, X., Cao, Y., Lu, P., Kang, Y., Lin, Z., Hao, T., & Song, Y. (2018). Evaluation of platelet indices as diagnostic biomarkers for colorectal cancer. Scientific reports, 8(1), 11814. https://doi.org/10.1038/s41598-018-29293-x