EFFECT OF SARS-CoV-2 ON CYTOCHROME P450-DEPENDENT METABOLISM OF DRUG: A REVIEW
DOI:
https://doi.org/10.31861/biosystems2025.02.238Keywords:
virus, liver, COVID-19, cytochrome P450, SARS-CoV-2 infection, xenobioticAbstract
Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a virus that has spread worldwide. In addition to affecting respiratory cells, SARS-CoV-2 also impacts the organs of the digestive system, particularly the liver. It has been established that COVID-19, caused by SARS-CoV-2, significantly affects liver function in infected patients, which is critical for drug pharmacokinetics and safety. SARS-CoV-2 can affect liver cells both directly (via the viral receptor angiotensin-converting enzyme 2 (ACE2)) and indirectly, including through cytokine release and the so-called "cytokine storm." Viral activity leads to elevated liver enzyme levels (ALT, AST, GGT, ALP), decreased albumin levels, and disruption of the metabolism of endogenous substances and xenobiotics. It has been shown that liver injury impairs the function of the system responsible for metabolizing xenobiotics (the monooxygenase system or cytochrome P450 (CYP) system). Dysfunction of the monooxygenase system, in turn, leads to altered drug metabolism and additional toxicity, particularly in cases of drug–drug interactions. This review highlights the main potential mechanisms of liver injury in COVID-19, raising awareness of drug metabolism pathways. Analysis of the metabolism of anti-coronavirus drugs by different CYP isoforms may help prevent drug interactions in patients with comorbidities.
SARS-CoV-2 infection also alters CYP expression, including CYP3A4, CYP2B6, and CYP2C9, via cytokine-mediated regulation, resulting in reduced drug metabolism, increased plasma drug concentrations, and higher risk of toxicity. Polypharmacy in COVID-19, including antiviral drugs, hydroxychloroquine, anti-inflammatory agents, and medications for comorbidities, further increases the risk of drug interactions and liver injury. Anti-cytokine therapy (e.g., tocilizumab) and supportive agents such as melatonin and vitamin D may help restore CYP activity, reduce inflammation, and improve drug clearance. Understanding the mechanisms of SARS-CoV-2-induced liver dysfunction and CYP modulation is essential for optimizing pharmacotherapy, minimizing drug-related toxicity, and improving clinical outcomes in patients with COVID-19.
References
1. Ali, M. J., Hanif, M., Haider, M. A., Ahmed, M. U., Sundas, F., Hirani, A., Khan, I. A., Anis, K., & Karim, A. H. (2020). Treatment options for COVID-19: A review. Frontiers in Medicine, 7, 480. https://doi.org/10.3389/fmed.2020.00480
2. AlOmeir, O., Alhowail, A. H., Rabbani, S. I., Asdaq, S. M. B., Gilkaramenthi, R., Khan, A., Imran, M., & Dzinamarira, T. (2025). Safety and efficacy of tocilizumab in COVID-19: A systematic evaluation of adverse effects and therapeutic outcomes. Journal of Infection and Public Health, 18(10), 102873. https://doi.org/10.1016/j.jiph.2025.102873
3. Azevedo, R. B., Botelho, B. G., Hollanda, J. V. G., Ferreira, L. V. L., Junqueira de Andrade, L. Z., Oei, S. S. M. L., Mello, T. S., & Muxfeldt, E. S. (2021). Covid-19 and the cardiovascular system: A comprehensive review. Journal of Human Hypertension, 35(1), 4–11. https://doi.org/10.1038/s41371-020-0387-4
4. Becker, M. L., Pearson, E. R., & Tkáč, I. (2013). Pharmacogenetics of oral antidiabetic drugs. International Journal of Endocrinology, 2013, 686315. https://doi.org/10.1155/2013/686315
5. Bertolini, A., van de Peppel, I. P., Bodewes, F. A. J. A., Moshage, H., Fantin, A., Farinati, F., et al. (2020). Abnormal liver function tests in patients with COVID-19: Relevance and potential pathogenesis. Hepatology, 72(5), 1864–1872. https://doi.org/10.1002/hep.31480
6. Bertolini, A., van de Peppel, I. P., Bodewes, F. A. J. A., Moshage, H., Fantin, A., Farinati, F., Fiorotto, R., Jonker, J. W., Strazzabosco, M., Verkade, H. J., & Peserico, G. (2020). Abnormal liver function tests in patients with COVID-19: Relevance and potential pathogenesis. Hepatology, 72(5), 1864–1872. https://doi.org/10.1002/hep.31480
7. Biswas, I., & Khan, G. A. (2020). Coagulation disorders in COVID-19: Role of Toll-like receptors. Journal of Inflammation Research, 13, 823–828. https://doi.org/10.2147/JIR.S271768
8. Cao, B., Wang, Y., Wen, D., Liu, W., Wang, J., Fan, G., et al. (2020). A trial of lopinavir-ritonavir in adults hospitalized with severe Covid-19. New England Journal of Medicine, 382(19), 1787–1799. https://doi.org/10.1056/NEJMoa2001282
9. Chai, X., Hu, L., Zhang, Y., et al. (2020). Specific ACE2 expression in cholangiocytes may cause liver damage after 2019-nCoV infection. BioRxiv, 1–13. https://doi.org/10.1101/2020.02.03.931766
10. Chang, J., Kim, A., Humeniuk, R., Shaik, N. A., Winter, H., Peng, C. C., Xiao, D., Abdelghany, M., Llewellyn, J., Davies, S., Golden, K., Chen, S., Hyland, R. H., & Caro, L. (2025). Characterization of drug-drug interactions for remdesivir, an intravenous antiviral for SARS-CoV-2, in healthy participants. Clinical and Translational Science, 18(11), e70395. https://doi.org/10.1111/cts.70395
11. Chen, X., Hong, F., Shen, Y., Xia, H., Shi, L., Jiang, Z., & Xu, R. A. (2025). Inhibitory effects of nimodipine, nitrendipine and felodipine on tamoxifen metabolism and molecular docking. Biochemical Pharmacology, 236, 116854. https://doi.org/10.1016/j.bcp.2025.116854
12. Christmas, P. (2015). Role of cytochrome P450s in inflammation. Advances in Pharmacology, 74, 163–192. https://doi.org/10.1016/bs.apha.2015.03.005
13. Corrêa, B. S. G., de Barros, S., Vaz, J. B., Peres, M. A., Uchiyama, M. K., da Silva, A. A., & Furukawa, L. N. S. (2023). COVID-19: Understanding the impact of anti-hypertensive drugs and hydroxychloroquine on the ACE1 and ACE2 in lung and adipose tissue in SHR and WKY rats. Physiological Reports, 11(3), e15598. https://doi.org/10.14814/phy2.15598
14. Danek, P. J., & Daniel, W. A. (2024). The effect of new atypical antipsychotic drugs on the expression of transcription factors regulating cytochrome P450 enzymes in rat liver. Pharmacological Reports, 76(4), 895–901. https://doi.org/10.1007/s43440-024-00608-2
15. Darakjian, L., Deodhar, M., Turgeon, J., & Michaud, V. (2021). Chronic inflammatory status observed in patients with type 2 diabetes induces modulation of cytochrome P450 expression and activity. International Journal of Molecular Sciences, 22(9), 4967. https://doi.org/10.3390/ijms22094967
16. Denisov, I. G., Grinkova, Y. V., McLean, M. A., Camp, T., & Sligar, S. G. (2022). Midazolam as a probe for heterotropic drug-drug interactions mediated by CYP3A4. Biomolecules, 12(6), 853. https://doi.org/10.3390/biom12060853
17. Drozdzik, M., Lapczuk-Romanska, J., Wenzel, C., Skalski, L., Szeląg-Pieniek, S., Post, M., Parus, A., Syczewska, M., Kurzawski, M., & Oswald, S. (2023). Protein abundance of drug metabolizing enzymes in human hepatitis C livers. International Journal of Molecular Sciences, 24(5), 4543. https://doi.org/10.3390/ijms24054543
18. Ejaz, H., Alsrhani, A., Zafar, A., Javed, H., Junaid, K., Abdalla, A. E., Abosalif, K. O. A., Ahmed, Z., & Younas, S. (2020). COVID-19 and comorbidities: Deleterious impact on infected patients. Journal of Infection and Public Health, 13(12), 1833–1839. https://doi.org/10.1016/j.jiph.2020.07.014
19. Ellison, D. H. (2019). Clinical pharmacology in diuretic use. Clinical Journal of the American Society of Nephrology, 14(8), 1248–1257. https://doi.org/10.2215/CJN.09630818
20. Emami, A., Javanmardi, F., Pirbonyeh, N., & Akbari, A. (2020). Prevalence of underlying diseases in hospitalized patients with COVID-19: A systematic review and meta-analysis. Archives of Academic Emergency Medicine, 8(1), e35.
21. Fakhouri, E. W., Peterson, S. J., Kothari, J., Alex, R., Shapiro, J. I., & Abraham, N. G. (2020). Genetic polymorphisms complicate COVID-19 therapy: Pivotal role of HO-1 in cytokine storm. Antioxidants, 9(7), 636. https://doi.org/10.3390/antiox9070636
22. Felsenstein, S., Herbert, J. A., McNamara, P. S., & Hedrich, C. M. (2020). COVID-19: Immunology and treatment options. Clinical Immunology, 215, 108448. https://doi.org/10.1016/j.clim.2020.108448
23. Feng, G., Zheng, K. I., Yan, Q. Q., Rios, R. S., Targher, G., Byrne, C. D., et al. (2020). COVID-19 and liver dysfunction: Current insights and emergent therapeutic strategies. Journal of Clinical and Translational Hepatology, 8(1), 18–24. https://doi.org/10.14218/JCTH.2020.00018
24. Feng, G., Zheng, K. I., Yan, Q.-Q., et al. (2020). COVID-19 and liver dysfunction: Current insights and emergent therapeutic strategies. Journal of Clinical and Translational Hepatology, 8(1), 18–24. https://doi.org/10.14218/JCTH.2020.00018
25. Föderl-Höbenreich, E., Izadi, S., Hofacker, L., Kienzl, N. F., Castilho, A., Strasser, R., Tarrés-Freixas, F., Cantero, G., Roca, N., Pérez, M., Lorca-Oró, C., Usai, C., Segalés, J., Vergara-Alert, J., Mach, L., & Zatloukal, K. (2025). An ACE2-Fc decoy produced in glycoengineered plants neutralizes ancestral and newly emerging SARS-CoV-2 variants and demonstrates therapeutic efficacy in hamsters. Scientific Reports, 15(1), 11307. https://doi.org/10.1038/s41598-025-95494-w
26. Gautret, P., Lagier, J. C., Parola, P., & Raoult, D. (2020). Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial. International Journal of Antimicrobial Agents, 56(1), 105949. https://doi.org/10.1016/j.ijantimicag.2020.105949
27. Gautret, P., Lagier, J. C., Parola, P., & Raoult, D. (2020). Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial. International Journal of Antimicrobial Agents, 56(1), 106063. https://doi.org/10.1016/j.ijantimicag.2020.105949
28. Giri, A., Das, A., Sarkar, A. K., & Giri, A. K. (2020). Mutagenic, genotoxic and immunomodulatory effects of hydroxychloroquine and chloroquine: A review to evaluate its potential to use as a prophylactic drug against COVID-19. Genes and Environment, 42, 25. https://doi.org/10.1186/s41021-020-00164-0
29. Grasselli, G., Zangrillo, A., Zanella, A., et al. (2020). Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy Region, Italy. JAMA, 323(16), 1574–1581. https://doi.org/10.1001/jama.2020.5394.
30. Guan, G., Gao, L., Wang, J., et al. (2020). Exploring the mechanism of liver enzyme abnormalities in patients with novel coronavirus-infected pneumonia. Chinese Journal of Hepatology, 28, E002. https://doi.org/10.3760/cma.j.issn.1007-3418.2020.02.002
31. Hamaguchi, T., Fujita-Nakata, M., Shojima, Y., Uchida, N., Nakanishi, M., Itoh, T., & Asahina, M. (2025). Acute transverse myelitis following SARS-CoV-2 infection during treatment for ulcerative colitis with anti-TNFα therapy. Clinical Neurology and Neurosurgery, 252, 108854. https://doi.org/10.1016/j.clineuro.2025.108854
32. Hammock, B. D., Wang, W., Gilligan, M. M., & Panigrahy, D. (2020). Eicosanoids: The overlooked storm in coronavirus disease 2019 (COVID-19)? American Journal of Pathology, 190(9), 1782–1788. https://doi.org/10.1016/j.ajpath.2020.06.010
33. Hosseini, S. E., Kashani, R. N., Nikzad, H., Azadbakht, J., Hassani Bafrani, H., & Haddad Kashani, H. (2020). The novel coronavirus disease-2019 (COVID-19): Mechanism of action, detection and recent therapeutic strategies. Virology, 551, 1–9. https://doi.org/10.1016/j.virol.2020.08.011
34. Huang, C., Huang, L., Wang, Y., Li, X., Ren, L., Gu, X., Kang, L., Guo, L., Liu, M., Zhou, X., Luo, J., Huang, Z., Tu, S., Zhao, Y., Chen, L., Xu, D., Li, Y., Li, C., Peng, L., Li, Y., Xie, W., Cui, D., Shang, L., Fan, G., Xu, J., Wang, G., Wang, Y., Zhong, J., Wang, C., Wang, J., Zhang, D., & Cao, B. (2023). 6-month consequences of COVID-19 in patients discharged from hospital: A cohort study. The Lancet, 401(10393), e21–e33. https://doi.org/10.1016/S0140-6736(23)00810-3
35. Hundt, M. A., Deng, Y., Ciarleglio, M. M., Nathanson, M. H., & Lim, J. K. (2020). Abnormal liver tests in COVID-19: A retrospective observational cohort study of 1,827 patients in a major U.S. hospital network. Hepatology, 72(4), 1169–1176. https://doi.org/10.1002/hep.31487
36. Kang, S., Peng, W., Zhu, Y., Lu, S., Zhou, M., Lin, W., et al. (2020). Recent progress in understanding 2019 novel coronavirus (SARS-CoV-2) associated with human respiratory disease: Detection, mechanisms and treatment. International Journal of Antimicrobial Agents, 55(5), 105950. https://doi.org/10.1016/j.ijantimicag.2020.105950
37. Khan, S. (2024). Interleukin 6 antagonists in severe COVID-19 disease: Cardiovascular and respiratory outcomes. Protein & Peptide Letters, 31(3), 178–191. https://doi.org/10.2174/0109298665266730240118054023
38. Khazir, J., Ahmed, S., Thakur, R. K., Hussain, M., Gandhi, S. G., Babbar, S., Mir, S. A., Shafi, N., Tonfack, L. B., Rajpal, V. R., Maqbool, T., Mir, B. A., & Peer, L. A. (2024). Repurposing of plant-based antiviral molecules for the treatment of COVID-19. Current Topics in Medicinal Chemistry, 24(7), 614–633. https://doi.org/10.2174/0115680266276749240206101847
39. Kim, S., Ostor, A. J., & Nisar, M. K. (2012). Interleukin-6 and cytochrome-P450, reason for concern? Rheumatology International, 32(9), 2601–2604. https://doi.org/10.1007/s00296-012-2423-3
40. Knudsen, J. G., Bertholdt, L., Gudiksen, A., Gerbal-Chaloin, S., & Rasmussen, M. K. (2018). Skeletal muscle interleukin-6 regulates hepatic cytochrome P450 expression: Effects of 16-week high-fat diet and exercise. Toxicological Sciences, 162(1), 309–317. https://doi.org/10.1093/toxsci/kfx258
41. Knudsen, L. B., & Lau, J. (2019). The discovery and development of liraglutide and semaglutide. Frontiers in Endocrinology, 10, 155. https://doi.org/10.3389/fendo.2019.00155
42. Le, M. P., Jaquet, P., Patrier, J., Wicky, P. H., Le Hingrat, Q., Veyrier, M., et al. (2020). Pharmacokinetics of lopinavir/ritonavir oral solution to treat COVID-19 in mechanically ventilated ICU patients. Journal of Antimicrobial Chemotherapy, 75(9), 2657–2660. https://doi.org/10.1093/jac/dkaa261
43. Lei, F., Liu, Y. M., Zhou, F., Qin, J. J., Zhang, P., Zhu, L., et al. (2020). Longitudinal association between markers of liver injury and mortality in COVID-19 in China. Hepatology, 72(2), 389–398. https://doi.org/10.1002/hep.31301
44. Li, J., & Fan, J. G. (2020). Characteristics and mechanism of liver injury in 2019 coronavirus disease. Journal of Clinical and Translational Hepatology, 8(1), 13–17. https://doi.org/10.14218/JCTH.2020.00019
45. Li, M. Y., Li, L., Zhang, Y., & Wang, X. S. (2020). Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues. Infectious Diseases of Poverty, 9(1), 45. https://doi.org/10.1186/s40249-020-00662-x
46. Mahmood, S. B. Z., Majid, H., Arshad, A., Zaib-Un-Nisa, Niazali, N., Kazi, K., Aslam, A., Ahmed, S., Jamil, B., & Jafri, L. (2023). Interleukin-6 (IL-6) as a predictor of clinical outcomes in patients with COVID-19. Clinical Laboratory, 69(6). https://doi.org/10.7754/Clin.Lab.2022.220741
47. Maor, Y., & Zimhony, O. (2025). Hyperimmune globulins in COVID-19. Current Topics in Microbiology and Immunology, 443, 149–164. https://doi.org/10.1007/82_2024_277
48. Marzolini, C., Stader, F., Stoeckle, M., Franzeck, F., Egli, A., Bassetti, S., et al. (2020). Effect of systemic inflammatory response to SARS-CoV-2 on lopinavir and hydroxychloroquine plasma concentrations. Antimicrobial Agents and Chemotherapy, 64(9), e01177-20. https://doi.org/10.1128/AAC.01177-20
49. McGonagle, D., Sharif, K., O’Regan, A., & Bridgewood, C. (2020). The role of cytokines including interleukin-6 in COVID-19 induced pneumonia and macrophage activation syndrome-like disease. Autoimmunity Reviews, 19(6), 102537. https://doi.org/10.1016/j.autrev.2020.102537
50. Musa, S. (2020). Hepatic and gastrointestinal involvement in coronavirus disease 2019 (COVID-19): What do we know till now? Arab Journal of Gastroenterology, 21(1), 3–8. https://doi.org/10.1016/j.ajg.2020.03.002
51. Nagy, I., Baráth, B. R., Mangó, K., Shemirani, A. H., Monostory, K., & Nemes, B. (2022). The prognostic role of CYP enzyme in kidney transplantation: A single centre experience. Transplantation Proceedings, 54(9), 2584–2588. https://doi.org/10.1016/j.transproceed.2022.10.046
52. Nardo, A. D., Schneeweiss-Gleixner, M., Bakail, M., Dixon, E. D., Lax, S. F., & Trauner, M. (2021). Pathophysiological mechanisms of liver injury in COVID-19. Liver International, 41(1), 20–32. https://doi.org/10.1111/liv.14730
53. Ni, W., Yang, X., Yang, D., Bao, J., Li, R., Xiao, Y., Hou, C., Wang, H., Liu, J., Yang, D., Xu, Y., Cao, Z., & Gao, Z. (2020). Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19. Critical Care, 24(1), 422. https://doi.org/10.1186/s13054-020-03120-0
54. Nwabufo, C. K., Hoque, M. T., Yip, L., Khara, M., Mubareka, S., Pollanen, M. S., & Bendayan, R. (2023). SARS-CoV-2 infection dysregulates the expression of clinically relevant drug metabolizing enzymes in Vero E6 cells and membrane transporters in human lung tissues. Frontiers in Pharmacology, 14, 1124693. https://doi.org/10.3389/fphar.2023.1124693.
55. Paludetto, M.-N., Kurkela, M., Kahma, H., Backman, J. T., Niemi, M., & Filppula, A. M. (2023). Hydroxychloroquine is metabolized by CYP2D6, CYP3A4, and CYP2C8, and inhibits CYP2D6, while its metabolites also inhibit CYP3A in vitro. Drug Metabolism and Disposition, 51(3), 293–305. https://doi.org/10.1124/dmd.122.001018.
56. Panigrahy, N., Policarpio, J., & Ramanathan, R. (2020). Multisystem inflammatory syndrome in children and SARS-CoV-2: A scoping review. Journal of Pediatric Rehabilitation Medicine, 13(3), 301–316. https://doi.org/10.3233/PRM-200794
57. Paniri, A., Hosseini, M. M., Rasoulinejad, A., & Akhavan-Niaki, H. (2020). Molecular effects and retinopathy induced by hydroxychloroquine during SARS-CoV-2 therapy: Role of CYP450 isoforms and epigenetic modulations. European Journal of Pharmacology, 886, 173454. https://doi.org/10.1016/j.ejphar.2020.173454
58. Papic, N., Pangercic, A., Vargovic, M., Barsic, B., Vince, A., & Kuzman, I. (2012). Liver involvement during influenza infection: Perspective on the 2009 influenza pandemic. Influenza and Other Respiratory Viruses, 6(3), e2–e5. https://doi.org/10.1111/j.1750-2659.2011.00287.x
59. Park, Y. A., Song, Y. B., Yee, J., Yoon, H. Y., & Gwak, H. S. (2021). Influence of CYP2C9 genetic polymorphisms on the pharmacokinetics of losartan and its active metabolite E-3174: A systematic review and meta-analysis. Journal of Personalized Medicine, 11(7), 617. https://doi.org/10.3390/jpm11070617
60. Pollmann, N. S., Dondorf, F., Rauchfuß, F., Settmacher, U., Pollmann, L., & Selzner, M. (2025). Impact of recent COVID-19 infection on liver and kidney transplantation: A worldwide meta-analysis and systematic review. Frontiers in Immunology, 16, 1626391. https://doi.org/10.3389/fimmu.2025.1626391
61. Qiu, D., Cao, W., Zhang, Y., Hao, H., Wei, X., Yao, L., Wang, S., Gao, Z., Xie, Y., & Li, M. (2025). COVID-19 infection, drugs, and liver injury. Journal of Clinical Medicine, 14(20), 7228. https://doi.org/10.3390/jcm14207228
62. Roldan, Q. E., Biasiotto, G., Magro, P., & Zanella, I. (2020). The possible mechanisms of action of 4-aminoquinolines (chloroquine/hydroxychloroquine) against SARS-CoV-2 infection (COVID-19): A role for iron homeostasis? Pharmacological Research, 158, 104904. https://doi.org/10.1016/j.phrs.2020.104904
63. Schneider, J., Wobser, R., Kühn, W., Wagner, D., Tanriver, Y., & Walz, G. (2023). Nirmatrelvir/ritonavir treatment in SARS-CoV-2 positive kidney transplant recipients: A case series with four patients. BMC Nephrology, 24(1), 99. https://doi.org/10.1186/s12882-023-03154-w
64. Seifert, S. M., Castillo-Mancilla, J. R., Erlandson, K. M., & Anderson, P. L. (2017). Inflammation and pharmacokinetics: Potential implications for HIV-infection. Expert Opinion on Drug Metabolism & Toxicology, 13(6), 641–650. https://doi.org/10.1080/17425255.2017.1311323
65. Shukla, A., Singh, A., & Tripathi, S. (2024). Perturbed lipid metabolism transduction pathways in SARS-CoV-2 infection and their possible treating nutraceuticals. Journal of the American Nutrition Association, 43(7), 614–626. https://doi.org/10.1080/27697061.2024.2359084
66. Stasi, C. (2025). Post-COVID-19 pandemic sequelae in liver diseases. Life, 15(3), 403. https://doi.org/10.3390/life15030403
67. Stoll, F., Blank, A., Mikus, G., Czock, D., Weiss, J., Meyer-Tönnies, M. J., Gümüs, K. S., Tzvetkov, M., Burhenne, J., & Haefeli, W. E. (2024). Evaluation of hydroxychloroquine as a perpetrator on cytochrome P450 (CYP) 3A and CYP2D6 activity with microdosed probe drugs in healthy volunteers. European Journal of Drug Metabolism and Pharmacokinetics, 49(1), 101–109. https://doi.org/10.1007/s13318-023-00872-2
68. Sun, J., Aghemo, A., Forner, A., & Valenti, L. (2020). COVID-19 and liver disease. Liver International, 40(6), 1278–1281. https://doi.org/10.1111/liv.14470
69. Thomas, A. M., Litwin, A. H., Tsui, J. I., Sprecht-Walsh, S., Blalock, K. L., Tashima, K. T., Lum, P. J., Feinberg, J., Page, K., Mehta, S. H., Kim, A. Y., Norton, B. L., Heo, M., Stein, E. S., Murray-Krezan, C., Arnsten, J., Groome, M., Waters, E., & Taylor, L. E. (2025). Retreatment of Hepatitis C virus among people who inject drugs. Clinical Infectious Diseases. ciaf08. https://doi.org/10.1093/cid/ciaf082
70. Tripathy, S., Dassarma, B., Roy, S., Chabalala, H., & Matsabisa, M. G. (2020). A review on possible modes of action of chloroquine/hydroxychloroquine: Repurposing against SARS-CoV-2 (COVID-19) pandemic. International Journal of Antimicrobial Agents, 56(2), 106028. https://doi.org/10.1016/j.ijantimicag.2020.106028
71. U.S. National Library of Medicine. (2020). ClinicalTrials.gov: A database of privately and publicly funded clinical studies conducted around the world. https://clinicaltrials.gov
72. Wieczfinska, J., Kleniewska, P., & Pawliczak, R. (2022). Oxidative stress-related mechanisms in SARS-CoV-2 infections. Oxidative Medicine and Cellular Longevity, 2022, 5589089. https://doi.org/10.1155/2022/5589089
73. Yang, J., Zheng, Y., Gou, X., Pu, K., Chen, Z., Guo, Q., et al. (2020). Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: A systematic review and meta-analysis. International Journal of Infectious Diseases, 94, 91–95. https://doi.org/10.1016/j.ijid.2020.03.017
74. Yao, X., Ye, F., Zhang, M., Cui, C., Huang, B., Niu, P., & Song, C. (2020). In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clinical Infectious Diseases, 71(15), 732–739. https://doi.org/10.1093/cid/ciaa237
75. Zhang, C., Shi, L., & Wang, F. S. (2020). Liver injury in COVID-19: Management and challenges. The Lancet Gastroenterology & Hepatology, 5(5), 428–430. https://doi.org/10.1016/S2468-1253(20)30057-1
76. Zhang, F., Huang, J., Liu, W., Wang, C. R., Liu, Y. F., Tu, D. Z., Liang, X. M., Yang, L., Zhang, W. D., Chen, H. Z., & Ge, G. B. (2021). Inhibition of drug-metabolizing enzymes by Qingfei Paidu decoction: Implication of herb-drug interactions in COVID-19 pharmacotherapy. Food and Chemical Toxicology, 149, 111998. https://doi.org/10.1016/j.fct.2021.111998
77. Zhang, F., Huang, J., Liu, W., Wang, C. R., Liu, Y. F., Tu, D. Z., Liang, X. M., Yang, L., Zhang, W. D., Chen, H. Z., & Ge, G. B. (2021). Inhibition of drug-metabolizing enzymes by Qingfei Paidu decoction: Implication of herb-drug interactions in COVID-19 pharmacotherapy. Food and Chemical Toxicology, 149, 111998. https://doi.org/10.1016/j.fct.2021.111998
78. Zhang, J., Jia, Q., Li, Y., & He, J. (2023). The function of xenobiotic receptors in metabolic diseases. Drug Metabolism and Disposition, 51(2), 237–248. https://doi.org/10.1124/dmd.122.000862
79. Zhang, R., Wang, X., Ni, L., Di, X., Ma, B., Niu, S., et al. (2020). COVID-19: Melatonin as a potential adjuvant treatment. Life Sciences, 250, 117583. https://doi.org/10.1016/j.lfs.2020.117583