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ABSTRACT Landmines remain a deadly legacy of past and present conflicts, with these hidden explosive devices causing
thousands of casualties each year. In addition to the existing mainstream methods of detecting landmines and minefields,
several new technologies are being investigated, such as nuclear mine detection methods, namely nuclear quadrupole
resonance (NQR) and neutron detection. Both NQR and neutron techniques are quite promising and offer powerful
advantages in detecting landmines and minefields, although they have certain draw-backs in practical use. Artificial
intelligence can significantly mitigate these shortcomings through advanced signal processing, adaptive algorithms, etc. The
purpose of the article is to analyze, research and systematize available information on the positive effectiveness and
feasibility of using nuclear methods (NQR and neutron-based) to detect mines and minefields, as well as to improve the
accuracy and effectiveness of using these methods using artificial intelligence.
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. INTRODUCTION

andmines remain a deadly legacy of past and ongoing
L conflicts, with an estimated 110 million active

landmines scattered across about 60 countries. These
hidden explosives cause thousands of casualties each year
—1in 2022 alone, landmines and explosive remnants of war
killed or injured over 4,700 people, the vast majority of
them civilians (about half of the victims were children) [1].
Beyond the human toll, landmines impede economic
recovery by rendering farmland and infrastructure
unusable. Removing mines is painstaking and expensive (a
mine that costs as little as $3 to produce can cost up to
$1,000 to safely remove). Both military engineers and
humanitarian demining organizations employ a range of
detection technologies to locate mines and clear
contaminated land [1]. However, no single detection
method is perfect — each has its own strengths and
limitations, and often multiple techniques are combined for
greater effectiveness. This article provides an overview of
current technologies for detecting landmines and
minefields, covering both widely used operational tools
and promising experimental methods, namely a detailed
review of detection methods such as nuclear quadrupole
resonance (NQR) and neutron-based detection methods
(neutron activation). It also examines how artificial
intelligence (Al) is being integrated into these technologies
and how Al can further improve mine detection through
computer vision, robotics, signal processing, and
predictive modeling.

II. AN OVERVIEW OF THE METHODS OF LANDMINE
AND MINEFIELD DETECTION UNDER RESEARCH
For military purposes (e.g., during conflict or
immediate post-conflict operations), speed and operator

safety are paramount — armies may use armored vehicles

with detectors or mechanical demining devices to quickly

break through minefields, sometimes taking on greater risk
of missing mines in order to advance more quickly. In
civilian humanitarian demining, the priority is to achieve

nearly 100% clearance with minimal risk, even if it takes a

long time. Deminers must work in a variety of

environments, from dense jungles and deserts to urban
ruins, and often deal with a combination of anti-personnel

and anti-tank mines placed in unpredictable locations [2].

This variety of scenarios has led to the development of

numerous detection methods, from simple metal detectors

to modern sensor arrays. Below is a list of few main

detection technologies used today [2-4]:

A. Metal Detectors.

- Principle: Electromagnetic induction to sense metal in
mines. Handheld coil emits a magnetic field, induces
currents in metallic objects, and detects the response.

- Advantages: Lightweight, low-cost, and easy to
operate; highly sensitive to metal fragments, able to
find very small metal pieces (e.g. detonator parts);
proven in decades of field use (standard tool
worldwide).

- Limitations: Cannot detect non-metallic mines
(minimal metal mines are challenging); very high false
alarm rate: shrapnel and debris trigger signals (e.g. in
Cambodia only 0.3% of 200 million metal signals were
actual mines); performance is degraded in mineralized
soils (magnetic soils cause noise).

- Typical Use Cases: Humanitarian demining: primary
tool for manual deminers, swept inch-by-inch to
pinpoint mines; military engineers: used in breaching
operations and route clearance for metallic mines/IEDs
(often alongside other sensors).
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. Ground-Penetrating Radar (GPR).
Principle: High-frequency radio waves sent into the
ground; detects reflections from buried objects with
different dielectric properties. Often used in dual-
sensor detectors (with metal detector).
Advantages: Capable of detecting non-metallic mines
(plastic, wood) by imaging the shape or detecting
dielectric contrast with soil; provides depth information
and target imaging (can distinguish object vs. soil
layering); combining GPR with metal detection greatly
reduces false alarms from metallic clutter.
Limitations: Limited penetration in conductive or wet
soils (signal attenuation in clay or moist ground);
cluttered environments (rocks, roots, surface debris)
produce confusing reflections; slower and more
complex: requires signal processing expertise and
generates large data volumes; typically short range —
antenna must be close to ground, making fast scanning
difficult.
Typical Use Cases: Dual-sensor handheld units: e.g.
US Army’s HSTAMIDS detector (combines metal
detector + GPR) used in Irag/Afghanistan and by
NGOs; vehicle-mounted GPR: used for route clearance
(finding buried roadside mines/IEDs) on military
vehicles (e.g. Husky mine-detection vehicles);
surveying suspect areas: in humanitarian operations to
detect low-metal mines after initial metal detection
sweeps.

. Infrared (IR) & Thermal.
Principle: Passive thermal imaging (or active heating)
to detect temperature differences in soil covering a
mine. Buried mines alter the thermal conductivity and
heat flow of the ground; at certain times of day, the
ground above a mine may be warmer or cooler than
surrounding soil.
Advantages: Non-contact, standoff detection — can be
done from a safe distance or aerial platform (drone,
aircraft); can cover large areas faster than ground
detectors when conditions are ideal; detects both
metallic and non-metallic mines (based on thermal
signature, not material).
Limitations: Strongly dependent on environmental
conditions: weather, soil moisture, time of day all affect
thermal contrast; generally effective only for shallow
mines. Mines deeper than ~10—15 cm may not produce
a detectable surface temperature difference; yields false
positives from natural temperature variations (rocks,
sun/shade patterns) and is less useful in dense
vegetation.
Typical Use Cases: Aerial reconnaissance: drones or
aircraft with IR cameras to scan open areas (e.g. desert
minefields) at dawn or dusk for thermal anomalies;
confirmation tool: used after clearing vegetation or in
combination with other sensors to highlight likely
buried objects. Mostly experimental or in pilot
programs due to reliability issues.

. Acoustic & Seismic.
Principle: Acoustic or vibrational energy is introduced
into the ground (e.g. via a loudspeaker, shaker, or
seismic thumper). Buried mines resonate or reflect
vibrations differently than soil. A sensor (e.g. laser
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Doppler vibrometer or geophone) measures the
ground’s response to detect anomalies.

Advantages: Can detect minimal-metal and plastic
mines by their mechanical signature, regardless of
metal content; potential for standoff detection: modern
systems use lasers to remotely sense vibrations from a
safe distance, keeping operators out of the minefield;
not as affected by metallic clutter or soil magnetism
(mechanical properties are the focus).

Limitations: Requires an external vibration source and
sensitive sensors; setup can be complex and equipment
heavy (vehicles, tripods often needed); surface
conditions (vegetation, uneven ground) and soil type
can interfere with vibration patterns, making data
interpretation difficult; largely experimental; not yet
widely deployed operationally. Scanning large areas
can be slow.

Typical Use Cases: Research prototypes: e.g. the
University of Mississippi’s LAMBDIS system uses a
vehicle-mounted laser array to map ground vibrations
in real time; potential military use: convoy-mounted
acoustic detectors to find mines/IEDs from a moving
vehicle. (Currently in testing); focused area
confirmation: scanning suspicious spots identified by
other methods to differentiate a mine from a rock via its
vibration signature.

E. Chemical Sensors (Trace Explosive Detection).

Principle: Detecting vapor or microscopic particles
emitted by explosives in a landmine. Methods include
biological detectors (scent-detection dogs or rats) and
electronic sensors (“electronic noses,” ion mobility
spectrometers, colorimetric kits, etc.).

Advantages: Finds mines with no metal by sniffing the
explosive itself — effective for minimum-metal or
plastic mines that other detectors might miss; dogs (and
trained rats) are highly sensitive and can cover ground
relatively quickly by sampling air over large areas. A
well-trained mine detection dog can indicate the
presence of buried explosives with high reliability;
some chemical sensors can confirm the type of
explosive (e.g. TNT vs RDX) by chemical signature.
Limitations: Many explosives have very low vapor
pressure — a buried mine may emit only trace amounts,
making detection difficult if the soil traps the
chemicals; wind, rain, and terrain affect scent
distribution; gaps in coverage can leave mines
undetected if no odor reaches the sensor; dogs and other
animals require extensive training, conditioning, and
rest; their performance can vary and they may be
distracted by other scents. Electronic detectors can be
overly sensitive or give false alarms from chemical
contaminants.

Typical Use Cases: Humanitarian demining:
commonly deploys mine detection dogs to “sniff” large
suspect areas and flag-mine locations. Dogs are often
used to systematically survey minefields before manual
clearing; security/military: dogs and handheld
explosive trace detectors are used at checkpoints or to
search vehicles and buildings for explosive devices
(including mines/IEDs); emerging: researchers are
experimenting with drones carrying lightweight
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chemical sensors or using biosensors (like bees or

genetically engineered plants) to indicate explosives,

but these are not yet field-proven.

Beyond the mainstream methods above, the next
several novel technologies are being researched to
overcome the current challenges in landmine detection:
Advanced Sensor Fusion & 3D Imaging, LiDAR and
Optical Methods, Nuclear Methods (NQR and Neutron),
Biological Sensors, Quantum and Advanced Sensing [5].

Each of the above technologies has both significant
advantages and disadvantages in the process of detecting
landmines and minefields.

In this article, we will focus on and examine in detail

the following methods: NQR and  Neutron-Based
Detection Methods (Neutron Activation).
F. Nuclear Quadrupole Resonance. NQR is a radio-
frequency (RF) technique that can directly detect certain
explosive molecules by their nuclear properties [6].
Nuclear Quadrupole Resonance exploits the unique
electromagnetic resonance signatures of nitrogen nuclei
commonly present in explosives like TNT, RDX, HMX,
and PETN. NQR functions similarly to an MRI scan but at
radio frequencies specific to nitrogen compounds found in
explosives. It detects the resonance signals produced when
nitrogen atoms, under specific radio-frequency pulses,
respond with characteristic frequencies. A sensor placed
close to or above the ground emits radio-frequency
pulses [6]. If a landmine (containing nitrogen-rich
explosives) is present, the nitrogen nuclei resonate and
emit detectable signals.

The presented method has several significant
advantages, namely: high selectivity — specifically detects
the chemical composition (nitrogen-rich explosives), thus
significantly reducing false positives from metallic or non-
explosive clutter; non-metallic mine detection — capable of
finding plastic or non-metallic mines since it directly
detects explosive chemicals, independent of metal content;
non-destructive and safe — doesn’t use ionizing radiation,
thus safe for operators and the environment.

Despite all its advantages, there are some challenges
that this method faces in the process of detecting landmines
and minefields, such as: weak signal and noise issues —
NQR signals are inherently weak and easily obscured by
environmental radio-frequency noise; limited detection
depth — typically effective for shallow mines (within
approximately 10 cm —20 cm) [6]. Deeper mines may
have resonance signals too faint to detect; slow scanning
speed — early NQR systems required several seconds to
minutes per measurement, making large-area surveys
impractical; sensitivity to environmental conditions — soil
moisture and temperature fluctuations can affect detection
performance.

Although this method is still largely experimental, it
has successfully demonstrated its positive effectiveness in
research and limited military applications. Field tests have
shown promise in distinguishing buried explosives from
harmless objects with a low false alarm rate. For example,
NQR has been tested in research projects funded by
defense agencies such as DARPA and NATO to detect
explosives in mine clearance and checkpoint screening
applications.
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G. Neutron-based detection. Neutron Activation involves

interrogating the soil with neutrons to detect explosive

materials by analyzing resultant gamma-ray emissions.

Neutrons emitted by a portable neutron source interact with

buried objects. These interactions cause the emission of

characteristic gamma rays, particularly from nitrogen-rich
explosives. In the technical application of this method for
detecting landmines and minefields, there are two main

approaches [7]:

- Thermal Neutron Activation: Low-energy (thermal)
neutrons interact with nitrogen atoms, causing them to
emit distinctive gamma rays.

- Fast Neutron Analysis: Higher-energy (fast) neutrons
can penetrate deeper into the soil, generating gamma
rays from elements like nitrogen, hydrogen, and carbon
in explosives.

The advantages of the above-mentioned method in the
detection of landmines and minefields are considered to be
as follows: direct chemical detection — detects explosives
based on their elemental composition, allowing
discrimination between explosives and innocuous
materials; effective at deeper depths — can detect buried
mines deeper than methods like NQR, metal detectors, or
GPR (over 30 cm); non-metallic mine detection — like
NQR, neutron methods can find plastic and minimum-
metal mines due to their chemical-based detection

principle.
Like any method that, despite its relative success, is
considered experimental, this method has certain

limitations and challenges in its usage, like: use of
radioactive sources — requires radioactive neutron sources
(e.g., isotopes like Californium-252), raising regulatory,
safety, and logistical challenges; heavy equipment and
complexity — systems are often bulky and complex,
limiting portability and usability in challenging terrains;
slow scanning and data analysis — early systems required
significant measurement time per location, slowing down
overall clearance speed; gamma-ray background
interference — background radiation can mask the signals,
potentially leading to missed detections or false alarms [7].

This method has been successful mainly in
experimental or limited applications for specialized
military purposes, information about which is quite
difficult to obtain, as it is classified. However, it is known
that some neutron-based detection systems installed on
vehicles have been tested by military engineers to clear
routes or check for explosive objects at checkpoints [7].

Thus, each of the methods discussed above —both NQR
and neutron-based methods — are similar in their general
principle of operation, but they have both powerful
advantages in detecting landmines and minefields and
some scope for improvement, which is why these methods
are used in a more experimental setting or in the military
sphere (which, understandably, reduces the amount of
publicly available information about the successful use of
these methods for detecting landmines and minefields in
practice). For a more detailed comparison of the two
methods discussed, Table 1 below provides a comparative
analysis of the characteristics of certain parameters of the
methods under study and some common methods for
detecting landmines and minefields [8, 9].
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It should also be noted that the practical application of
the above-described methods in detecting landmines and
minefields requires the use of rather complex and
expensive equipment. For NQR that for example [9]:

- NQR RF Transmitter and Receiver: Emits RF pulses
at specific frequencies and detects resonance signals
from nitrogen nuclei.

- RF Coil/Antennas: Transmit RF energy and receive
resonance signals.

- RF Amplifier & Low-Noise Amplifier: Boost
transmitted RF pulses and amplify weak NQR signals.

- Signal Processing Unit: Perform frequency-domain
and time-domain analysis of resonance signals.

- Environmental Noise Reduction Equipment: Filters
and shielding to minimize electromagnetic interference
(EMI) from environmental sources (e.g., radio towers,
electrical equipment).

- Data Acquisition and Computing
Capture, store, and analyze resonance data.
At the same time, Neutron-based detection method

Hardware:

TABLE 1. Comparative analysis of the methods described above.

requires the following equipment for its practical
implementation, albeit experimentally:

Neutron Source: Generates neutron beams for
interrogation.

Gamma-ray Detectors: Detect gamma rays emitted by
neutron interactions.

Gamma-ray Spectroscopy Electronics: Analyzes
gamma-ray spectra, identifies explosive-specific
signals.

Moderators and Shielding: Moderate fast neutrons
and reduce radiation exposure to operators.

Radiation Safety and Monitoring Equipment:
Ensuring operator safety.

Robotic or Vehicle-Based Platforms: Move neutron-
based detectors safely across contaminated land.

Data Acquisition & Processing Computers: Real-
time data collection and analysis.

Therefore, in a sense, the use of these methods in the

detection of landmines and minefields remains at the
experimental level, due to the complexity and high cost of
the equipment required for successful use in practice.

Neutron EMI (Metal
Feature NQR Methods IR/Thermal De te(c tors) GPR
Detection RF resonance of =~ Gamma-ray Thermal contrast ~ Electromagnetic Reflection of
Principle nitrogen nuclei emission from between soil and  response from radio waves from
neutron mine metallic objects buried objects
interactions
Depth Penetration  Shallow Deeper Very shallow Medium Medium
(~10 cm — 20 cm)  (often 30+ cm) (~5cm—15cm) (~10cm—-20cm, (~10 cm—30 cm)
deeper for large
metal objects)
Speed of Generally slow; Generally slow; Fast (area Moderate Moderate to slow
Detection improving improving surveys), slow for

False Positive
Rate

Operational
Complexity

Safety and
Environmental
Issues

Current Status

Al Improvement
Opportunities

Dependence on
Landmine Size

Low (chemical-
specific)

Medium
(electronics
complexity)
Safe (non-
ionizing
radiation)
Experimental
with promising
field tests

High potential for
Al in signal
processing, noise
reduction, and
real-time adaptive
scanning

Low; chemical-
specific detection
largely
independent of
size, but small
mines yield
weaker signals

Low (element-
specific)

High (requires
neutron source)

Requires
radioactive source

Military &
experimental
(limited
humanitarian use)
High potential for
Al in gamma-ray
spectra analysis,
robotic
integration, and
data fusion

Moderate; better
at detecting larger
mines due to
higher explosive
content

detailed analysis
High;
environmental
variability

Low to moderate;
simple to deploy

Safe

Experimental;
limited
operational use

High potential for
Al in image
processing,
pattern
recognition, and
environmental
compensation
High; smaller
mines yield
weaker thermal
contrast and are
difficult to detect
reliably.

High; metallic
clutter

Low; easy to
operate

Safe

Widely
operational

Moderate
potential; Al-
enhanced signal
processing,
clutter
discrimination,
and sensor fusion
High; very small
metal fragments
can be detected,
but difficult
distinguishing
mines from debris

Moderate;
subsurface clutter
and soil
variability
Moderate;
requires trained
operators

Safe

Operational in
humanitarian and
military contexts

High potential;
Al-driven image
reconstruction,
clutter reduction,
and subsurface
target
identification
Moderate; smaller
mines harder to
distinguish
clearly from
subsurface
clutter, larger
mines easier
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I1l. IMPROVING THE PRESENTED DETECTION METHODS
USING ARTIFICIAL INTELLIGENCE

Al is playing an increasingly important role in
landmine detection, primarily by helping to interpret
complex data and by enabling greater autonomy in search
operations.

One of the strengths of modern Al, particularly deep
learning, is analyzing imagery. In mine action, Al-driven
computer vision can analyze aerial and satellite images to
detect subtle signs of landmines or minefields. This might
include recognizing patterns such as circular craters (from
detonations), linear disturbances (rows of emplaced
mines), or changes in vegetation and soil color that indicate
buried explosives. For instance, the Demining Research
Community developed a model using drone imagery where
an Al algorithm locates surface mines; they achieved about
92% accuracy in identifying mines like the small green
PFM-1 “butterfly” mine from images. Such accuracy is
impressive given the difficulty for a human to spot these
camouflaged objects in photos. Another organization,
Mine Kafon, uses a dual-drone approach: the first drone
maps the area in 3D, and the second collects data (visual,
metal detection, etc.), which is then fed into mine-detecting
software that marks likely mine locations on the 3D map.
This process relies on computer vision algorithms to fuse
sensor data with the visual map [10].

Al can also exploit spectral imagery beyond visible
light. For example, feeding an algorithm multi-spectral
data (infrared, thermal) allows it to learn the visual/thermal
signature of mines at certain times of day, filtering out false
signals from rocks or animal burrows. Satellite imagery,
while lower resolution than drone footage, can cover huge
areas. Al algorithms have been trained to scan historical
satellite images to find clues of landmines — such as
patterns of soil disturbances or even identifying old conflict
fortifications (trenches, defensive lines) where mines are
likely. Tech companies have collaborated with NGOs to
apply Al on satellite data in places like Syria and Ukraine,
flagging areas for ground teams to investigate.

A real-world example of Al in vision is the
collaboration between the HALO Trust and Amazon Web
Services in Ukraine: HALO is piloting Al to process drone
and satellite imagery to identify debris of war and signs of
landmine presence. The Al will highlight features like
destroyed vehicles, craters, or suspicious ground scars near
villages and roads — these can indicate either mines or other
explosive ordnance. By automating the image analysis,
HALO hopes to prioritize clearance tasks more efficiently.
Another example is Safe Pro’s SpotlightAl, reportedly
used in Ukraine, which processes drone photos in seconds
to detect surface-laid mines and mark their GPS
coordinates [11].

Many mine detection sensors — especially GPR,
acoustic, and multi-sensor arrays — produce complex
signals or images that are not straightforward to interpret.
Al and machine learning are increasingly used to analyze
this raw data and pick out the signature of a landmine from
background noise or clutter. This application of Al is more
behind-the-scenes but critically important for improving
detection rates and lowering false alarms.

Before any sensors hit the ground, one key challenge is
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where to look for mines. Al is increasingly used to predict
likely locations of minefields or even individual mines,
using a combination of historical data, geospatial analysis,
and pattern recognition. Essentially, this is about using
algorithms to forecast risk: given everything we know
about a region (battle history, terrain, prior finds, etc.),
where are mines probably present?

Modern conflicts and historical ones leave data trails.
For example, military records might indicate where
defensive minefields were laid, or peacekeepers might
have partial survey data. Al can take such structured data
along with remote sensing inputs and output probability
maps. A notable example comes from NEC Corporation’s
work with the International Committee of the Red Cross:
they developed an AI system that, using open data
(geological info, habitation locations, conflict history,
witness reports), could predict areas with a high likelihood
of landmines with about 90% accuracy. Their Al flagged
both likely hazardous areas and likely safe areas, aiding
efficient land release. This kind of model can be invaluable
for prioritizing demining efforts — focusing resources on
the most at-risk areas first [12].

Another example is a 2024 study that combined
military expertise with machine learning to classify and
predict mined areas by type and priority. They incorporated
factors like proximity to strategic locations, vegetation
cover, and terrain, using  algorithms  like
XGBoost/LightGBM, and reportedly achieved ~97%
accuracy in their predictions. This was validated by
demining experts who agreed such a model could greatly
reduce risk and cost, improving decision-making.
Essentially, the Al was learning from both historical
clearance data and expert input to forecast where mines are
and even what types (anti-personnel vs anti-vehicle) might
be present [12].

Applications of Predictive Modeling: Minefield Risk
Mapping: Al can produce heatmaps overlaying a map,
showing gradations of risk. For example, an Al might
highlight old battlefields, former front lines, around
military bases, along likely infiltration routes, etc., as high
risk, while marking other areas as low risk. This helps land
release: areas judged likely free of mines can be released
for use after minimal checks, whereas high-risk zones get
full clearance. This approach is encapsulated by tools like
the Mine Action Decision Support Tool, which some
researchers have proposed using Al and Geographic
Information System (GIS).

Resource Allocation: In countries with vast
contaminated land (like Angola or Cambodia), Al risk
models can help decide where to send demining teams first
or which communities are most in need of clearance (by
predicting where accidents are likely if not cleared).

Operational Planning: If Al predicts that a certain
valley is full of anti-tank mines because battles occurred
there, clearance teams can gear up accordingly (bring
heavy machinery or specific detectors, etc.). Conversely, if
an area likely has only scattered anti-personnel mines, a
different approach (dogs and manual clearance) might be
planned.

Discovering  Unrecorded Minefields:  Often,
combatants lay mines without maps. Al can pick up
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patterns from known minefields and scan unexplored areas
for similar patterns. For example, if it learns that mines in
a region are often laid near streams (perhaps to deter
crossing), it can flag other similar stream crossings nearby
that had no records but fit the pattern.

These predictive models often use GIS data layers: land
use, soil type, slope, distance to villages, past conflict
events. Machine learning algorithms like random forests or
neural networks then find correlations. Some also
incorporate social datasets — like where accidents have
happened (crowdsourced reports of explosions), which
could indicate presence of more mines in that locale.
There’s also an approach using Bayesian inference to
update the probability of mines as new evidence comes in
(for instance, every time a new mine is found or not found
in a searched area, the model updates its confidence for
neighboring areas) [13].

The following points should be emphasized regarding
the improvement of the NQR potential through the
integration of Al — Signal Processing Enhancement (Al can
analyze faint or noisy resonance signals, greatly improving
the signal-to-noise ratio and detection reliability), Real-
Time Adaptive Scanning (Al-driven adaptive methods can
optimize the scan strategy based on initial readings or
ambient noise levels, improving detection speed) [14].

As for improving the potential of Neutron-Based
Methods through the integration of Al the following points
should be highlighted — Gamma-Ray Spectra Analysis
(advanced Machine Learning models (e.g., deep neural
networks) can analyze complex gamma-ray spectra
rapidly, enhancing the discrimination of explosive
signatures from background noise), Predictive Modeling
(AI algorithms can use historical detection data and
neutron interaction modeling to predict probable mine
locations, focusing neutron interrogation on high-risk
spots), Al-guided neutron detection can enhance safety,
consistency, and area coverage) [15].

One caution is that such Al predictions need ground
truthing — they assist but don’t replace surveys. Yet, even
a 90% accurate model like NEC’s means a huge
improvement in efficiency. If we can tell with high
probability which square kilometers out of a thousand are
mined, we save enormous effort. In conclusion, Al in
predictive modeling serves as a strategic tool,
complementing the tactical tools. It helps answer “where
should we look?” so that all the detection technologies
(metal detectors, GPR, etc.) can then answer “what exactly
is there?”. Combining Al-driven predictions with Al-
enhanced detectors creates a powerful pipeline: from broad
planning down to pinpoint identification, Al can accelerate
the journey towards a mine-free world.

IV. CONCLUSION

Landmine detection has evolved into a high-tech,
multidisciplinary endeavor. Traditional methods like metal
detectors and trained dogs, which have liberated countless
communities from danger, are now augmented by ground-
penetrating radar, thermal cameras, advanced chemical
sensors, and robotic platforms. Each technology brings its
own advantages — be it the simplicity of a metal detector or
the ability of GPR to find plastic mines — and each has
limitations that necessitate a complementary approach. In
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operational contexts, militaries and humanitarians alike are
deploying multi-sensor solutions: a single demining
operation today might involve manual deminers with dual-
sensor detectors, mine detection dogs sweeping adjacent
areas, a mechanical deminer clearing vegetation, and
drones mapping from above. This integrated toolbox
dramatically improves safety and efficiency compared to
any one method alone.
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MepcneKTsmn PO3BUTKY Ta BUKOPUCTAHHA AAEPHUX
meTo/is BUABNEHHA HAa3eMHUX MiH Ta MIHHMX NOAIB

ApTtem KacbaHuyk*, FanuHa Jlactieka, AHgpiii Camina

Kadenpa pagiotexHiku Ta iHdopmaLiiHoi 6e3nekn, YepHiBeLbKUI HaLiOHAaNbHUI yHiIBepcuTeT imeHi FOpia ®eppkoBuya, m.YepHisui, YkpaiHa
*ABTOp-KOpecnoHaeHT (E-mail: kasianchuk.artem@chnu.edu.ua)

AHOTALIA HazemHi MiHM 3anMWwaloTbCa CMepTe/NbHO Hebe3neyHow CnaawMHOK MUHYAWUX | MOTOYHUX KOHIKTIB, 3a
ouiHKamu — 6113bKo 60 KpaiH matoTb Npuban3HO 110 MiNbIOHIB aKTUBHMX HAa3EMHMX MiH Ha CBOIX TepuTopisx. Lii npuxoBaHi
BMOYXOBI NPUCTPOI LLLOPOKY CAPUYMHAIOTL TUCAYI XKepTB — anwe y 2022 poui HaseMHi MiHM Ta BUOYXOBi 3aNUWKK BilHU
3abpanun XuTTa abo nopaHuau noHag 4700 ocib, nepeBarkHa 6inbWicTb 3 AKUX Byan umMBINbHUMKU ocobamu (NpUbAN3HO
NMONIOBMHA XepTB — AiTh). OKPIM MIIOACLKMX KEPTB, HA3eMHI MiHV NepeLKoAKatoTb EKOHOMIYHOMY BiAHOBAEHHIO, PobasYM
CiNbCbKOrocnoAapchbki yriaaa Ta iHGpacTpyKTypy HeNpMAATHUMM ANA BUKOPUCTAHHA. 3HELWKOAKEHHA MiH € KPONiTKO Ta
[0CUTb AOPOrot0 CNPaBoto (6e3neyHe 3HELWKOAKEHHA MiHW, BUPOOHMLTBO AKOT KOLUTYE BCbOrO 3 A0OapU, MOXKE KOLITYBaTU
00 1000 ponapis). AK BIMCbKOBI iHXEHepW, TaK i rymaHiTapHi opraHisauii 3 po3miHyBaHHA BUKOPWCTOBYIOTb LiAWUIA pAaA,
nepeBipeHMX YacoOM METOZIB Ta TEXHO/OTIW AR BUABNEHHA Ta 6E3NeYHOro 3HELWKOAMKEHHS HAa3eMHUX MiH Ta MiHHWUX NoniB
Ha BE/IMKUX AiNsiHKax Teputopin. OKpiM CTaHOAPTU30BaHMX METOAIB BUABJEHHA HAa3eMHWUX MiH Ta MiHHWX nonis, gns
MOA0/1aHHA CyHaCHUX BUKJ/IUKIB Y AaHil chepi — [OCNiAKYOTbCA TaKi HOBI TEXHOAOTII, AIK: BAOCKOHA/IeHa CEHCOPHA iHTerpaLis
Ta 3D-Bi3yanizauin, LIDAR Ta onTuyHi meToan, aaepHi metoan, 6ionoriyHi metoam BUABMEHHA, KBAHTOBI ceHcopu. OfHaK,
JKOAEH METOZ BUAB/IEHHS He € igeaZlbHUM — KOMKEH MA€E CBOI CWJIbHI CTOPOHM Ta OBMeXKeHHs, i yacto ana 6inblwoi
epeKTUBHOCTI NOEAHYIOTL KiNbKa TEXHIK. Y Lili CTATTi NO4AHO OrNs4 Cy4acHUX TEXHONOTI BUABNEHHA HA3EMHUX MiH | MiHHUX
MoAiB, LLLO OXOM/IOE AK LUIMPOKO BUKOPUCTOBYBAHI ONepaTUBHI iHCTPYMEHTM, TaK i MepPCNeKTUBHI eKcnepMMeHTanbHi MeToam,
a came AeTa/lbHUI OrA 4 Ta NOPIBHANIbHA XapPaKTEPUCTMKA TaKUX METOAIB BUABNEHHSA, AK: AAEPHUIA KBaAPYMNOAbHUIA Pe30HaHC
Ta MEeTOAM BWAB/MIEHHSA Ha OCHOBI HEMTPOHIB (HEMTPOHHa aKTMBaLif). TaKoXK PO3MAAHYTO, AK LUTYYHWUW iHTenekT (LUI)
iHTErpyeTbca 3 MeTo4ammn Mo BUABNEHHIO HAa3eMHUX MiH Ta MiHHUX noJiB Ta fAK LUl moxe we 6inblie NOKpaLmMT npoLec
OEeTeKTYBaHHA Ha3eMHUX MiH 33 AOMOMOro0 KOMM'IOTEPHOTO 30pYy, 06POBKM CUrHANIB Ta NPOFHO3HOTO MOZE/IIOBAHHA.

K/II0YOBI C/1I0BA aaepHUIt KBagpynonbHUA PE30HAHC, HEMTPOHHWI AETEKTOp, Ha3eMHi MiHM, BUABNEHHA MiHHUX NOANIB,
WITYYHUM iHTENEKT.
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