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ABSTRACT At the current stage of development, software-based random number generation is increasingly vulnerable to
attacks due to the growing computational power of modern systems. Hardware-based generation relies on reliable stochastic
physical phenomena, yet often demonstrates low throughput or an insufficient level of statistical quality. In this study, linear
cellular automata are utilized as a post-processing mechanism aimed at improving key statistical properties of the random
number sequences. The study presents the results of improving the statistical properties of number sequences obtained from
a standard webcam with regard to one of the key cryptographic requirements — uniform distribution of values. Prior analyses
revealed that inherent stochastic behavior within webcam sensors produces irregular, non-uniform distributions in the
output sequences. This limitation can be mitigated by post-processing using linear cellular automata, specifically employing
rules 30, 90, 105, and 150. To evaluate the effectiveness of this method, a comparative analysis was conducted against
software-generated sequences produced via the Java SecureRandom class. It is shown that by applying a sufficient number
of iterations, it is possible to achieve the required level of uniformity in the distribution of sequence elements. However, the
generated sequences did not fully pass the NIST test suite. Statistical uniformity was assessed efficiently using lightweight
Java-based libraries, enabling rapid integration even on low-performance hardware such as smartphones. The research

findings can be applied in the design of a hardware-based random number generator.
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. INTRODUCTION
he generation of random numbers is fundamental to
T cryptographic mechanisms, including key creation,
secure password generation, and authentication
codes. Such generation is subject to a set of requirements
defined by standards such as NIST and BSI. However,
when it comes specifically to generating random number
sequences (RNS), these requirements reach a new
qualitative level: they do not override the existing ones but
rather introduce additional constraints.

A key challenge in modern software engineering is the
generation of RNS with a throughput of at least 100 Mbit/s,
with an ideal target of up to 1 Gbit/s. This requirement is
fundamental for dynamic steganography — the creation of
secure communication channels in which not only the
transmitted data are protected, but also the very fact of
transmission itself [1]. In such systems, encrypted data are
injected into the RNS and transmitted in this form over the
communication channel. Therefore, RNS generators must
meet stringent criteria that make it extremely difficult not
only to extract meaningful content but also to detect the
presence of data transmission at all. Ideally, the secure
channel constantly transmits random number sequences at
a speed of no less than 100 Mbit/s, operating 24/7.

This paper builds upon the findings presented in our
earlier work, in which we explored webcam-generated
random number sequences and the impact of cellular
automata processing [2, 3]. The present study extends that
foundation by incorporating a comparative evaluation

using NIST statistical tests and assessing the feasibility of
practical  implementation in  resource-constrained
environments.

II. THE WEBCAM AS A DRIVER OF RNS GENERATION

The technique for extracting a random number
sequence from a webcam frame, previously introduced in,
has been refined for the current study and used as a baseline
for comparative analysis [3].

Previous studies have demonstrated that a standard
webcam operating in SVGA mode (800 x 600) is capable
of generating 1 440 000 signed byte values per frame in the
range [-128...+127], which corresponds to
11 520 000 bits [2, 3].

Extrapolating this to a frame rate of 25 frames per
second yields a throughput of nearly 300 Mbit/s.

An experimental analysis of the correlation between
two consecutive frames (0.04 s apart) showed a correlation
of up to 30% in complete darkness and less than 10% under
normal lighting conditions. This indicates a high entropy
(randomness) of the generated RNS elements and a very
long recurrence period — practically infinite.

However, the statistical characteristics were found to be
not entirely satisfactory. In particular, the value
distribution of the elements was not uniform, which
contradicts the cryptographic requirement for randomness.

For comparison, a reference RNS was generated using
the SecureRandom library in the Java programming
language, which demonstrated a clearly uniform
distribution of values [3]. The deviation from the mean was
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just 1.2%. Such sequences fully meet all statistical
requirements, with the exception of unpredictability.

For the case of a frame captured under normal lighting
conditions, the value distribution histogram is shown in
Fig. 1.

As seen in Fig. 1, the histogram of a typical frame’s
value distribution is neither uniform nor Gaussian. This
indicates unpredictability, but not true randomness. Certain
byte values — for instance, within the range [0...25] — are
completely absent. As a result, standard deviation analysis
is not applicable in this case.

To address this issue, post-processing of the RNS using
chaotic-type cellular automata (CA) was proposed, in
particular, the “Rule 30” method [4, 5].

In terms of Boolean algebra, this method is expressed
as:

result = left XOR (center OR right). 1)

After processing the RNS with this functionality, the
resulting histogram is shown in Fig. 2.

As shown in Fig.2, the histogram exhibits a
distribution that can be described as “chaotically uniform”.

The deviation from the mean is approximately 12%. With
further processing — specifically 50 iterations — the
histogram becomes almost indistinguishable from that of
SecureRandom (the ideal case).

The time required for a single iteration was measured.
For SVGA mode (11520 000 bits), one iteration takes
approximately 60 microseconds. Therefore, applying 10
iterations slows down the generation process by roughly a
factor of 16.

The cellular automata functionality was implemented
in Java using low-level bitwise operations provided by the
core language. This approach operates at the kernel level
and requires minimal memory and processing time.
Therefore, it is entirely feasible to utilize all available CPU
cores, allowing the processing time to be reduced
proportionally through parallelization [6].

Due to the simplicity of their operation, cellular
automata are often referred to as “crypto-primitives”,
which makes it possible to implement this functionality in
virtually any programming language including Assembly,
C, or Python even on microcontrollers such as Arduino.
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FIG. 1. Histogram of RNS element distribution obtained from a webcam.
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FIG. 2. Histogram of RNS element distribution after CA-30 processing (10 iterations).
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In this experiment, no parallel computing techniques
were applied in order to preserve a clean conceptual model,
which can later be optimized for specific tasks and
computational resources.

IIl. NIST TESTS
The suite includes 15 statistical tests [7]. The RNS
under evaluation contained 13 million random byte
elements (equivalent to 100 Mbit), generated by the
webcam and processed through 10 iterations of CA-30.

TABLE 1. Preliminary NIST Test Results.

Test Name Test Passed (%)
Frequency (Monobit) PASSED
Block Frequency PASSED
Cumulative Sums PASSED
Longest Run of Ones PASSED

The remaining 11 tests were not passed. For more
accurate statistical evaluation, testing should be conducted
on at least 100 such RNS samples.

IV. OPTIMIZATION OF THE GENERATION PROCESS

Despite the fact that the generated RNS do not pass all
NIST tests, they possess a critically important property —
high throughput.

In certain scenarios involving the transmission of
encrypted data — such as dynamic steganography — the
relevance or validity of the transmitted information may
have a very short lifespan. At the same time, the process of
breaking cryptographic protection may require a
significantly longer period. Consequently, in such cases,
the quality of the RNS may be far from ideal, yet still
acceptable in terms of cryptographic security, provided
that the generation process offers sufficiently high
throughput.

As noted earlier in Section II, the throughput of a
webcam operating in SVGA mode (800 x 600) was
measured at nearly 300 Mbit/s. This value was obtained
experimentally under laboratory conditions using a
standard consumer-grade webcam, and serves to confirm
the proof-of-concept feasibility.

If a more powerful webcam is used for the experiment
— for example, the Anker PowerConf Web Camera C200,
which supports Quad HD mode (2560 x 1440) at 50 Hz —
the theoretical throughput increases to the following value:

P = 2560 x 1440 x 3 x 8 X 50 = 4.4 Gbit/s. (2)

In this mode (again, theoretically), the generator is
capable of operating continuously in 24/7 mode.

There exist webcams with even higher resolutions
(commonly used in security and surveillance systems). In
such cases, the generation throughput may be limited
solely by the bandwidth of the computer’s USB interface —
typically in the range of 20 — 40 Gbit/s.

The data presented refer to a single webcam and a
single USB port. Under horizontal scaling (by increasing
the number of webcams and USB ports) the overall
throughput increases exponentially.

As previously noted, modern cryptographic
applications (particularly steganography) typically require
throughput in the range of 0.1 Mbit/s to 1.0 Mbit/s.
Therefore, it becomes theoretically feasible to integrate a
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quality assessment module into the random number
generation process. Alternatively, in the case of Java,
parallel computation can be employed.

This does not imply the full suite of 15 NIST tests, but
rather the use of basic statistical checks — for example,
those provided by the DescriptiveStatistics library in the
Java programming language [8]. In this case, it is sufficient
to instantly calculate the standard deviation of the
generated sequence to obtain an approximate estimate of
RNS quality. If the quality is found to be unsatisfactory,
the sequence is post-processed using cellular automata
methods as previously described [9].

In an ideal theoretical scenario, where steganographic
encoding requires 100 Mbit/s [10] while the generator is
capable of delivering 40 Gbit/s, there exists a 400-fold time
reserve for both dynamic quality control and post-
processing using cellular automata.

In a practical scenario, a standard USB port provides a
data rate of only 480 Mbit/s, which allows for several
dozen processing iterations to be performed in order to
improve the statistical characteristics of the sequence.

If the quality control process relies on the
DescriptiveStatistics library, the cellular automata-based
post-processing can be implemented on even the simplest
microcontroller, such as an Arduino. A standard modern
smartphone running Android already includes the
DescriptiveStatistics library within the OS kernel, which
further simplifies the implementation of dynamic quality
evaluation.

V. CONCLUSION

Compared to our previous work [3], the current results
demonstrate a more rigorous validation framework through
partial NIST testing and practical throughput
measurements.

The use of cellular automata significantly slows down
the process of generating random number sequences. Even
with a relatively small number of iterations (10), the data
processing reduces the sequence generation speed, which
can be critical for high-speed systems.

In SVGA mode with 10 iterations of CA-30 processing,
the throughput reaches 20 Mbit/s.

Despite the performance reduction, cellular automata
improve the uniformity of random sequences.

The NIST tests are passed only partially. This remains
a subject for further research and refinement.

High generation throughput can compensate for
suboptimal RNS quality.

The bitwise operations used in CA methods enable the
implementation of this functionality on even the simplest
microcontrollers.
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[ocnipeHHA CTaTUCTUYHUX XaPAKTEPUCTUK
NOCNiJO0BHOCTEI BUNAAKOBUX YMCEN 3TeHepPOBaHUX
Beb6-Kamepoto 3a GyHKLIOHANIOM KNiITUHHUX aBTOMATIB

Ta natepHamu NIST

leopriii Npoxopos?, Mapia MaHxeno?, Poctucnas Aauyk?, Cepriit AHyweBCcbKUAY"

'Kadepapa nporpamHoro 3abesnedeHHs KOMN' IOTEPHUX CUCTEM, YepHiBeLbKUIA HaLiOHaNbHUIA YHiBepcUTET imeHi KOpis deabkosuya,

YepHisui, YKpaiHa

*ABTOp-KOpecnoHAeHT (EnekTpoHHa agpeca: s.yanushevskyi@chnu.edu.ua)

AHOTALIA Ha cyyacHomy eTani nporpamHa reHepawlia BUMMAAKOBUX YMCEN NiAOAETbCA PUSUKY 3/10MY 4Yepe3 3pOoCTaHHA
064MCNI0BANBHOI MOTYXKHOCTI Cy4acHUX cucTeM. FeHepaLia anapaTHOro TMNy 6asyeTbca Ha HaAiIMHUX CTOXAaCTUUHUX Gi3UYHUX
ABMLLAX, ane 3abe3neyye HU3bKY MPOAYKTUBHICTb ab0 HeAOCTaTHIN piBeHb CTAaTUCTUYHWUX NOKa3HMKiB. CyyacHi BUMOrn Ao
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WBKNAKOAIT reHepaTopa BMMaAKOBMX YMCE/ MOUYMHAIOTLCA 3 BeMuMHKU 100 M6iT/c. Y UuboMy AOCAIAMKEHHI AIHIAHI KAITUHHI
aBTOMATU BMKOPWUCTOBYIOTbCA fK MeXaHi3Mm NocT-06p0obKM, CNPAMOBAHMM Ha MNOKPALEHHA K/AYOBUX CTAaTUCTUHHUX
BN1AaCTUBOCTEN NOCNILOBHOCTEN BMMAAKOBUX uucen. Y [OCNIAMKEHHI HaBeAeHO pe3ynbTaTh MOKPALWEHHA CTAaTUCTUYHUX
XapaKTEPUCTUK MOCNIAOBHOCTI 4YMCEN, OTPMMAHUX 3i 3BMYAMHOI Beb-Kamepu, WOAO AOTPUMAHHA OJHIEI 3 BUMOr
KPWNTOCTIMKOCTi: PiBHOMIPHOrO PO3MOAiNY eNeMeHTIB 3a 3HayeHHAM. MonepefHi aHanisu Mokasanu, Wo npuTamaHHa
CTOXaCTUYHa MOBeJiHKa B CBIT/IOYYT/IMBUX €/IEMEHTIB Beb-Kamep NpU3BOAUTb A0 HEOAHOPIAHWX PO3MOAINY €NEMEHTIB Y
BUXiAHWUX nNocnifoBHOCTAX. Lito nepewkosy MOXHa NOAONAATU, BUKOPUCTOBYHOUM OOPOOKY AiHIMHUMU  KAITUHHUMM
aBTOMaTaMu, 30Kkpema npasuaamm 30, 90, 105. 150. Ana ouiHKM ePeKTUBHOCTI LbOro meToay 6yn0 NpoBeAeHO NOPIBHANbHUMN
aHani3 i3 NporpamHo-3reHepoBaHMMM NOCNIZOBHOCTAMM, OTPUMAHMMM 32 JONOMOrOto Knacy Java SecureRandom. Moka3saHo,
WO WAAXoM BMOOPY KiNbKOX iTepaliii MOMKHA OTPMMaTU HeobXigHWW piBeHb PIBHOMIPHOCTI poO3NoAiny enemeHTiB
NocNifOBHOCTI 3a 3HaYeHHAM. MpoTe TecTn NIST NOBHICTIO yCMilWHO NPOWTU He BAANOCb. CTaTUCTUYHY OAHOPIAHICTL 6yno
epeKTUBHO OLIHEHO 3a AOMOMOro MasnoBumorimMemx 6ibniotek DescriptiveStatistics moBM nporpamyBaHHA Java, wo
[,03BONIM/IO peani3yBaT LWBWMAKY iHTerpauito yHKLIOHaNy HaBiTb Ha HU3bKOMPOAYKTMBHOMY Ob6/MafHaHHI, TakOMy AK
cmapTdoH 3 onepauiiHoto cuctemoro Android. PesynbTaT AOCAiAMKEHHA MOXKYTb ByTM BMKOPUCTaHI NpW MPOEKTYBAHHI
BMCOKOLIBMAKICHOrO anapaTHOro reHepaTtopa NoCc/AiA0BHOCTI BUNAaAKOBUX YMCeN.

K/IIO4OBI C/1IOBA nporpamHa iHxKeHepis, Kibepbe3aneKa, Nocnigo0BHOCTI BUNAAKOBUX Yncen, Beb-Kamepa, KNiTUHHI aBToMaTty.
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