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ABSTRACT As data processing volumes grow in various fields, the demand for applications capable of efficiently managing, 
processing, and transforming large amounts of information is also increasing. Modern approaches to storing and processing 
large amounts of data are primarily based on universal text formats, such as CSV and JSON. Their prevalence can be explained 
by their compatibility with a wide range of software tools and ease of integration. These formats are inefficient when dealing 
with massive volumes of data, particularly when scaling systems or executing analytical queries. The lack of built-in 
compression, row structure, and metadata leads to significant time and computing resources, which creates a conflict 
between the requirements for speed and cost-effectiveness of processing and the technical capabilities of traditional text 
formats. Columnar storage formats, such as Parquet and ORC, offer an alternative. They employ a compact structure tailored 
for quick analytical queries in distributed computing settings. Effective coding, indexing, and built-in compression techniques 
considerably lower data sizes and speed up processing. This research aims to develop and experimentally verify the 
technology of automated data conversion from inefficient text formats to Parquet and ORC formats using Apache Airflow 
and Amazon EMR. The proposed architecture involves creating a cloud pipeline that performs data conversion and 
subsequent storage in formats focused on analytical workloads. The system uses Apache Airflow for process orchestration, 
Amazon EMR and Apache Spark for distributed processing, AWS S3 as scalable storage, AWS Glue for metadata management, 
and Amazon Athena for SQL access to transformed data. This approach solves performance problems by offering a flexible, 
reliable, cost-effective solution that adapts to different work scenarios and workloads. 
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I. INTRODUCTION 
s modern approaches to storing and processing large 
amounts of data are mostly based on universal text 
formats, such as CSV and JSON. These formats are 

popular because they integrate easily and work well with 
a wide range of software tools. However, when dealing 
with large datasets, their efficiency drops especially for 
analytical queries or when scaling systems. Without built-
in compression and with data arranged in a way that’s not 
optimized for column-based access, they end up 
consuming far more time and computing resources than 
necessary. Thus, a contradiction arises between the 
growing requirements for the speed and efficiency of 
information processing and the technical capabilities of 
traditional text formats. 

The purpose of this study is to develop and 
experimentally verify the technology of automated data 
conversion from inefficient text formats to columnar 
storage formats, in particular Parquet and ORC, using 
Apache Airflow and Amazon Elastic Map Reduce 
(EMR). It is assumed that such a solution will 
significantly increase the performance of analytical 
queries, as well as reduce the cost of storing and 
processing information in the cloud environment. 

This research examines the main drawbacks of CSV 
and JSON formats when handling large-scale data and 
explores the advantages of columnar formats designed for 
analytical workloads. Building on this analysis, we 

created a cloud-based pipeline that automatically 
transforms data and saves it in Parquet and ORC formats. 
It operates within the AWS environment, with Apache 
Airflow handling workflow orchestration and Amazon 
EMR managing the distributed data processing. 

As the amount of data that companies process grows, 
there is a demand for tools that can handle and process 
large data sets. CSV and JSON formats are the most 
popular and commonly used data formats. However, they 
fail to provide usable and efficient data representation for 
scalable analysis, as they do not compress, have a string-
based format and provide no built-in metadata. Instead, 
Parquet and ORC shall be compact, columnar, and 
optimized for analytical query performance in a 
distributed computing environment [1, 2]. Here, we 
report the development of a cloud-based pipeline 
intended to facilitate the conversion of raw data to these 
alternative, more analytically friendly representations. 
This system is built on top of state-of-the-art technologies 
such as Apache Airflow for orchestration [3], Amazon 
EMR with Apache Spark for distributed processing [4], 
AWS S3 for scalable storage [5], AWS Glue for 
maintaining metadata [6], and Amazon Athena for 
querying transformed data using SQL [7]. This 
implementation provides a performance solution that is 
both cost-effective and scalable, that can be easily 
monitored, and is also flexible across a multitude of 
workloads [8]. 
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II. SYSTEM ARCHITECTURE 
A cloud-based pipeline was created for data processing, 

which is easily scalable and works almost without human 
intervention. Each component performs its straightforward 
task – it is responsible for managing, launching, and 
optimizing the entire process. As shown in Figure 1, the 
whole architecture combines AWS services and open 
source tools, making the system stable, efficient, and easy 
to use. 

 
FIG. 1. System Architecture. 

A. Data Acquisition and Storage. It starts with storing raw 
files – usually CSV or JSON – in Amazon S3. This storage 
acts as a kind of “gateway” for the data and as a buffer 
before further processing. To ensure that the pipeline runs 
automatically and without failures, the folder structure in 
S3 is designed so that the names immediately show 
essential information: where the data came from, when it 
arrived, and what it contains. This allows the system to 
“understand” what it is dealing with and run the right 
processing logic. 

We chose Amazon S3 because it is stable, easily 
scalable, and integrates well with other AWS services. In 
addition, it has such useful features as file versioning, 
flexible access control, and object change events – all of 
which are very helpful in tracking where the data came 
from and ensuring stable and repeatable processing [5]. 
B. Process Orchestration with Apache Airflow. After data 
is placed in Amazon S3, the orchestration layer 
implemented with Apache Airflow monitors the 
appearance of new files in the storage. A Directed Acyclic 
Graph (DAG) is activated when a new object is detected, 
initiating a specific processing task sequence. Each DAG 
execution is configured with the specified parameters, 
allowing the workflow to dynamically adapt to various data 
formats and sources [3]. 

When a new file is detected, Airflow starts a 
transformation process that creates an EMR cluster, 
launches a Spark application, and logs the results. Airflow 
has a flexible architecture, so it can automatically repeat 
tasks in case of errors, run multiple tasks simultaneously, 
and send notifications in real time. It gives you complete 
control over how data processing is going. All important 
details – such as task statuses and logs – are stored in its 
metadata, so monitoring and auditing the system is 
relatively easy. 

This orchestration allows you to process data quickly 
and efficiently. It also scales easily, allowing multiple 
workflows to run in parallel for different data sources. 
 

C. Distributed Processing with Spark on Amazon EMR. The 
pipeline's backbone is the transformation logic developed 
using PySpark running on an Amazon EMR cluster. EMR 
is a managed service for Hadoop and Spark that enables 
scalable and fault-tolerant processing of large data sets [9]. 
Using Spot Instances and auto-scaling, the system reduces 
costs while maintaining performance [10]. 

PySpark tasks: 
• Read raw input data from S3; 
• Clean and normalize data (remove empty lines, 

address missing values, remove unwanted characters); 
• Determine variable types (e.g., numeric, categorical, 

boolean, text, timestamp); 
• Generate concise representations (e.g., statistical 

summaries, frequency tables, TF-IDF vectors); 
• Write transformed data to columnar formats. 
The power of Spark allows the system to process 

terabytes of data efficiently, executing tasks in parallel on 
multiple nodes. Intermediate transformations are cached in 
memory when necessary to improve execution efficiency. 
D. Compact Storage in Parquet and ORC. After 
transformation, the resulting datasets are serialized into 
columnar formats, such as Apache Parquet or ORC, and 
stored in a designated source storage on S3. These formats 
were chosen because they: 

• Offer columnar storage that allows for fast and 
selective reads; 

• Include built-in compression (Snappy, ZSTD). 
Storing data in Parquet or ORC formats reduces file 

size and speeds up analytical queries. To make it easier to 
navigate the data, we use a standardized file and folder 
naming scheme – they encode where the data came from, 
when it was processed, and which version of the schema 
was used. It greatly facilitates control, auditing, and 
maintaining cleanliness in the system. 
E. Metadata Integration with AWS Glue and Query Access 
with Athena. Each transformed dataset is automatically 
registered in the AWS Glue metadata catalogue to simplify 
queries and integrate with analytics tools. Glue acts as a 
centralized repository that stores information about 
schemas, partitions, and physical locations of files. Once 
registered, the data becomes available for instant querying 
through Amazon Athena, a serverless SQL engine that 
operates directly on data in S3 using standard SQL syntax. 
This approach avoids additional ETL steps or deploying a 
traditional DBMS. As a result, analysts, data scientists, and 
other services can quickly and cost-effectively access 
stored data. 

III. DATA PROCESSING WORKFLOW 
The data processing process is at the heart of the 

pipeline, which transforms raw files into clean, structured, 
and query-ready formats. This process includes validating 
the data, standardizing it, adding valuable context, and 
transforming it into efficient columnar formats. The entire 
module was implemented as a distributed PySpark 
application and is fully managed by Apache Airflow. It is 
built to handle a wide range of data sources and is designed 
for scalability and fault tolerance when running on Amazon 
EMR. 
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A. Raw Data Loading and Preprocessing. When a new data 
file is uploaded in Amazon S3, the DAG in Apache 
Airflow detects it and triggers an Amazon EMR cluster and 
delegates the processing tasks using PySpark. The first step 
is to load the file using Spark’s built-in CSV or JSON 
readers optimized for distributed parsing. The system is 
able to handle correctly: 

• files with or without headers; 
• non-standard delimiters and encodings; 
• missing or NULL values; 
• partially corrupted or noisy records. 
Data cleaning occurs immediately after loading and 

involves removing all extraneous whitespace and control 
characters, standardizing field delimiters, and replacing 
missing or incorrect values with predefined or statistically 
valid ones (e.g., median for numeric variables or mode for 
categorical variables). 

This preprocessing step provides a consistent and clean 
foundation for subsequent analytical analysis and data type 
determination. 
B. Variable Type Inference. A critical workflow component 
is the identification and classification of variable types. 
Each column in the dataset is individually examined using 
heuristic and statistical methods to determine its semantic 
type. The pipeline covers the following categories: 

• Boolean: Binary values such as True/False, 1/0, or 
Yes/No; 

• Factorial/Categorical: Columns that contain a limited 
set of unique values with low cardinality (e.g., product 
types, country codes); 

• Numeric: Integers or floating-point numbers that 
represent measured quantities; 

• Temporal: Strings or numbers that can be converted 
to standard date and time formats; 

• Text/String: Free text that can be structured (e.g., 
product IDS) or unstructured (e.g., descriptions, 
comments). 

The column type is determined based on several 
statistical characteristics, including the number of unique 
values, entropy, average string length, and the rate of 
successful casts to a particular type. For example, a column 
is classified as categorical if the number of unique values 
does not exceed 20 and the entropy remains low. Instead, a 
column is temporal if its values conform to known date and 
time formats and demonstrate regularity of intervals. 

This classification is the basis for applying aggregation 
and vectorization methods, allowing you to preserve the 
meaningful data load while reducing its dimensionality. 
C. Building a Compact Representation. Once the system 
has figured out the datatypes of the variables, it creates a 
compact but data-rich summary for each column within 
the dataset. These representations are chosen based on 
criteria to facilitate subsequent analysis and minimize data 
that should be stored, but the content is preserved: 

• Boolean and Categorical: The count and proportion 
are calculated for each unique value to build the frequency 
distribution. It helps detect class imbalance or categorical 
skew;  

• Numeric: The pipeline calculates statistics such as 
mean, standard deviation, minimum, maximum, and 
variance. In addition, percentiles or histograms can be 

created for skewed distributions;  
• Temporal: Temporal variables are segmented into 

hourly, daily, or monthly intervals, and the resulting time 
series is converted to a histogram of events. Temporal 
patterns and anomalies can be found more easily with it;  

• Text/String: The system uses TF-IDF (Term 
Frequency – Inverse Document Frequency) vectorization 
for unstructured text. It produces sparse feature vectors 
which highlight semantically important words in the 
collection. The TF-IDF matrix is limited, so it consumes 
less memory [11].  

The output is a more complex and smaller original data 
structure suitable for machine learning, outlier detection 
and data quality evaluation tasks. 
D. Compaction and Serialization. Once the compact views 
are ready, the next step is compressing and storing the data 
in an analytics-friendly columnar format. Apache Parquet 
or ORC are most commonly used for this, both of which 
have their advantages: 

• There is built-in compression (such as Snappy or 
ZSTD) that reduces the size of the files; 

• Complex data structures and types are supported; 
• The formats are compatible with popular analytics 

tools such as Athena, Presto, or Redshift Spectrum. 
All prepared files are stored in Amazon S3 in clearly 

structured folders. The file names and paths include 
information about where the data came from, when it was 
processed, and which schema version was used. This 
simplifies tracking change history and allows you to 
manage different versions easily. And if you need to work 
with large volumes, you can additionally partition the data, 
which significantly speeds up analytical queries. 
Additional partitioning can be applied to speed up 
analytical queries on extensive data. 

IV. AUTOMATION AND ORCHESTRATION                   
WITH APACHE AIRFLOW 

Automation is a fundamental principle in modern data 
engineering pipelines. Within this framework, Apache 
Airflow functions as the primary orchestrator that manages 
the complete data processing lifecycle, from input 
discovery to final output logging. Airflow provides the 
planning, execution, and dependency management 
necessary to ensure consistent, reproducible, and scalable 
execution of data processing workflows. 
A. The Role of Airflow in the Pipeline. Apache Airflow 
plays a crucial orchestration role in the given architecture 
by constantly observing the status of the specified Amazon 
S3 bucket looking for new raw files. By detecting one or 
more new entities a pre-defined DAG is automatically 
triggered that includes the full logic controlling how to start 
the transformation of the data. The DAG also serves to 
orchestrate the execution of tasks, to keep them ordered 
and to provide them with the full access to the input 
resources ever at their point of work [12].  

There are several significant benefits to using airflow 
here: 

• Decoupled logic: The different parts of the workflow 
(i.e., cluster creation, submission of the job, the metadata 
registration) were written as individual tasks; 

• Retries and error handling: If an error occurs during a 
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task execution – for example, due to a short-term network 
outage or incorrect input – Airflow will automatically try 
to run it again, guided by the specified rules;  

• Execution transparency: All the information of task 
status, execution time, logs, errors is kept inside Airflow’s 
storage, so you can know the details of what’s happening 
in the system. 

This modular task structure leads to ease of 
maintenance, and the declarative DAG nature of the it 
enhances visibility and auditability. 
B. DAG Execution Flow. A typical Airflow DAG in this 
pipeline consists of the following sequence of tasks: 

1. S3 Sensor Task: Monitors the arrival of new files to 
a specified S3 path. It can be configured using regular 
expression filters, object size conditions, or time window 
specifications. 

2. Cluster Provisioning Task: Initiates a temporary 
Amazon EMR cluster with configuration parameters, 
including instance type, point-to-point or on-demand 
options, autoscale policies, and upload actions. 

3. Spark Job Submission Task: Submits a PySpark job 
to the EMR cluster, pointing to a script or application 
stored in S3. The job parameters can be dynamically 
generated based on metadata extracted from the file path or 
its contents. 

4. Job Monitoring Task: Polls the EMR cluster to track 
the progress of the Spark job. Airflow can trigger an alert 
or escalate it to a backup engine if the job fails. 

5. Validate results: The system verifies that the 
required source files appeared in S3, in the correct format, 
and where they should be. 

6. Register with Glue: The API calls AWS Glue to 
register or update the schema and data storage location, 
allowing them to be conveniently queried through Amazon 
Athena. 

7. Cluster Dismantle Task: Shuts down the EMR 
cluster to prevent unnecessary overhead if automatic 
shutdown was not configured during setup. 

A DAG can also have conditional branching, parallel 
sub-DAGs, or cross-DAG triggers in more complex 
deployments, allowing for the orchestration of multiple 
datasets or related ETL stages. 
C. Parameterization and Dynamic Configuration. 
Airflow’s support for templates and environment variables 
allows the pipeline to be parametric and adaptable to 
different input characteristics or processing needs without 
changing the DAG logic. For example: 

• A file path such as s3://raw-data/logs/2025/05/04/ can 
be parsed to obtain dataset metadata (e.g. date, domain); 

• File-specific schemas, transformation instructions, or 
cluster size parameters can be injected at runtime; 

• Multiple DAGs can be created from a single template 
to facilitate parallel processing different datasets or 
business units. 

This design promotes reuse and reduces duplication. 
D. Monitoring and Alerting. Another essential aspect of 
maintaining a stable pipeline in production is the 
operational visibility of the whole execution. Airflow 
provides adequate monitoring tools that can be accessed 
via the web interface or REST APIS provided or integrated 
with other services, such as Prometheus, Slack, or 

PagerDuty.  
It possesses the following features: real-time 

visualization of the DAG execution, detailed logs of every 
task, including stdout and error streams, email or webhook 
notifications in achieving SLA or errors export metrics for 
the dashboards and monitoring systems, etc.  

These tools allow the engineering teams to provide 
control over all the execution stages and react rapidly to 
any issue before it can influence the business processes, 
which ensures excellent reliability and controllability of 
the whole pipeline. 

V. EVALUATION METHODOLOGY 
The Evaluation Methodology was developed to 

measure the proposed data transformation pipeline's 
efficiency, performance, and cost-effectiveness. It includes 
measuring the primary metrics, such as the amount of data 
stored following the processing, the execution of 
transformation time, the processing of analytical queries 
when ready, and the financial cost for the computational 
resources. 

This data was collected using a combination of 
empirical benchmarks, built-in monitoring and analytics 
tools from the AWS arsenal. The testing was conducted in 
conditions as close to real-world use as possible: with 
typical datasets, typical load processes, and configurations 
of Amazon cloud services. 
A. Datasets and Experimental Configuration. The 
evaluation applied stock trading time series data sets 
obtained from open financial platforms [13]. The topic was 
trading information for the shares of Apple and Tesla over 
several trading sessions. These datasets were chosen as 
they were semi-structured, numeric measures and 
timestamps, and found to be most interesting for testing 
analytical queries. Each dataset was uploaded to Amazon 
S3 in CSV format and ran in the described pipeline above. 
The Spark-based transformation workflow was executed 
on an Amazon EMR cluster with the following 
configuration: 

• Cluster type: EMR transient (auto-terminated); 
• Node configuration: one primary node, 2-4 primary 

nodes (m5.xlarge), with auto-scaling enabled; 
• Spark executor memory: 4 GB; 
• File sizes: 100 MB – 1 GB for each dataset. 
Output files were generated in Parquet and ORC 

formats for benchmarking. All executions were fully 
automated using Apache Airflow data groups. In multi-
cloud deployments, the pipeline can integrate with systems 
like Cassandra for persistent NoSQL storage [14]. 
B. Key Evaluation Metrics. The following four categories of 
metrics were established to evaluate the system at both the 
functional and operational levels:  

Storage Size Reduction. The original file size (CSV) 
ratio to the compressed Parquet or ORC file size was 
calculated to assess the compression efficiency. This 
metric is vital for understanding the long-term storage 
savings and the reduction in input/output in subsequent 
queries.  

Compression Ratio = CSV_Size / Parquet_Size/ORC. 
Transformation Latency. The transformation latency 

quantifies the time from file detection to completing the 
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PySpark job, including cluster startup, processing, and 
output recording. Latency was documented using:  

• Airflow job logs and execution timestamps;  
• CloudWatch EMR job monitoring (step start/stop 

time).  
This metric is crucial for assessing the throughput of 

the pipeline and its applicability for near-real-time 
operations or daily batch operations.  

Query Speed. To analyze the improvements in 
analytical performance, identical SQL queries were 
executed on raw CSV data and compressed Parquet/ORC 
data using Amazon Athena. The queries included:  

• SELECT with WHERE filters based on numeric 
ranges;  

• Aggregations (AVG, MAX, MIN);  
• Slices and groupings based on dates.  
The Athena query execution time and the amount of 

data scanned were recorded for each execution.  
Cost Analysis. The pipeline's financial impact was 

monitored using the AWS Billing and Cost Explorer 
dashboards. It included:  

• EMR Costs: Billing for cluster execution (EC2, EBS, 
and Spark overhead);  

• S3 Storage: Before and after data compression;  
• Athena Query Costs: Estimated based on data scanned 

for each query.  
Where possible, cost optimization techniques (such as 

point instances and automatic cluster termination) were 
used and their impact was documented. 
C. Metrics Collection Tools. Metrics data were collected 
from multiple sources to ensure accuracy and 
reproducibility: 

• Metric Source; 
• Storage Size S3 Object Metadata; 
• Job Latency Airflow Logs, CloudWatch Metrics; 
• Query Performance Athena Execution Logs [15]; 
• Cost and Usage AWS Billing Dashboard; 
• Resource Utilisation EMR Metrics, Spark UI. 

VI. RESULTS AND DISCUSSION 
Practical testing showed that data is stored more 

efficiently, queries are executed much faster, and the 
system operates stably even with increased load. Such 
achievements indicate the practical reliability and 
feasibility of implementing the proposed architecture in 
environments close to real production, considering modern 
requirements for processing large volumes of data. The 
following sections present a detailed analysis of the results 
in four key areas: storage reduction, transformation 
latency, query performance, and financial efficiency. 
A. Storage optimization. One of the most significant results 
of the applied transformation method was a significant 
reduction in data volumes by moving from raw CSV to 
columnar storage formats. As shown in Table 1, the 
transformation to Parquet and ORC formats allowed 
compression ratios of 3.5× to 5.2×, which varied according 
to the structure and level of redundancy in the initial data 
sets.  

After analyzing the data we received, we see that 
Apple's daily dataset, which initially had a size of 412 MB 
in CSV format, was reduced to 87 MB in Parquet format 

and 79 MB in ORC format. Similarly, Tesla's dataset was 
reduced from 398 MB to 114 MB (Parquet) and 98 MB 
(ORC). In addition to optimizing disk space use, the 
storage size reduction decreased the volume of data 
transported during analytical query execution, which 
decreased expenses and improved processing performance. 

TABLE 1. Compression Performance of Parquet and ORC.  

Dataset Format 
Original 

Size (CSV) 
Compressed 

Size 
Apple (daily) Parquet 412 MB 87 MB 
Tesla (daily) Parquet 398 MB 114 MB 
Apple (daily) ORC 412 MB 79 MB 
Tesla (daily) ORC 398 MB 98 MB 

Both Parquet and ORC did a good job of shrinking the 
size of the data, although ORC was somewhat more 
successful because of its more advanced encoding 
techniques and integrated indexing. Both Parquet and ORC 
did a good job of lowering the volume of data, but because 
of its more advanced encoding techniques and integrated 
indexing, ORC was marginally more effective. It improved 
performance and decreased expenses by saving storage 
space and transferring less data during analytical queries. 
B. Transformation latency. The time it took to fully process 
each dataset, from when the system detected it to when it 
completed compression, varied slightly depending on how 
quickly the clusters were started and how many resources 
were allocated. On average, during testing, the 
transformation latency was: 

• Apple dataset (412 MB): ~5.2 minutes; 
• Tesla dataset (398 MB): ~4.8 minutes. 
Most of the execution latency was the time to deploy 

the Amazon EMR cluster, which averaged about two 
minutes. In contrast, the direct processing of the data using 
Spark took between 2.5 minutes and 3 minutes for each 
dataset. The results indicate the proposed pipeline's 
suitability for daily batch transformations or even more 
frequent updates in systems where real-time processing is 
not required. 

Analysis of Airflow logs showed stable performance at 
the individual task level throughout all test runs. The 
automated retry mechanism effectively compensated for 
episodic delays in cluster initialization, which were 
recorded in one of the nine tests. 
C. Improved query performance. SQL queries executed 
through Amazon Athena showed significantly improved 
speed and cost-effectiveness when working with columnar 
formats compared to regular CSV files.  

TABLE 2. Formats for Apple and Tesla Datasets. 

Query Type 
CSV 
(ms) 

Parquet 
(ms) 

ORC 
(ms) 

Filter by date range + 
aggregation 

2350 580 490 

Compute daily 
averages 

1970 490 465 

Top N by volume 3120 610 540 

Switching to storing compressed output instead of raw 
input data provided an estimated 70% reduction in storage 
costs in Amazon S3. Additionally, because of the reduced 
amount of data to be scanned, query execution costs in 
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Amazon Athena decreased by approximately 65%. 
Implementing autoscaling and auto-termination of the 
cluster reduced the compute costs in the Amazon EMR 
environment to less than $0.25 per data set, even when 
using temporary clusters. 
D. Reliability and Observability. During testing, the 
orchestration layer was implemented through Apache 
Airflow reliably handled job launches, error handling, and 
the entire DAG lifecycle. Airflow logs and metrics from 
CloudWatch provided detailed insight into how individual 
jobs performed and how efficiently resources were 
utilised [16]. 

Key operational observations include: 
• No manual intervention was required during 
successful DAG execution; 
• Automatic resolution of job failures (e.g., temporary 
S3 access issues) through Airflow retries; 
• Cluster auto-termination function worked as 
expected, providing cost-effectiveness. 
This observation confirm that the pipeline is well-

suited for production environments where automation, 
error handling, and transparency are critical. 

VII. PRACTICAL APPLICATION AND SCALABILITY 
In addition to being good at transforming raw data into 

a format that is easy to analyze, this pipeline is also very 
flexible in its structure. It can be easily adapted to the needs 
of any field that deals with large amounts of data. Due to 
this versatility, the system is suitable not only for financial 
or logistics tasks, but also for medicine, retail and many 
other things. Such versatility makes the system useful and 
scalable for multiple application scenarios – from finance 
and logistics to healthcare or retail. Thanks to its modular 
design, cloud infrastructure orientation, and integration 
with popular opensource tools and native AWS services, 
the system provides easy implementation into corporate 
processes, compatibility with existing data processing 
platforms, and support for modern operational analytics 
practices. 
A. Corporate data warehouse and analytics. The proposed 
pipeline can be critically important in building a modern 
data processing and storage architecture for organizations 
that regularly receive large volumes of logs, transactional 
data, or information from IoT devices. Converting raw 
CSV or JSON files to Parquet, or ORC columnar formats, 
reduces long-term storage costs. It significantly improves 
the efficiency of analytical queries in systems such as 
Amazon Athena, AWS Redshift Spectrum, or Spark SQL. 

For example, financial companies that process large 
volumes of daily trading transactions can use this pipeline 
to automatically clean, compress, and log data to a 
centralized metadata catalogue. It enables analysts to 
perform near-real-time performance queries and historical 
analysis with minimal latency and without infrastructure 
expansion. 
B. Data Quality Monitoring and Profiling. With built-in 
variable classification and aggregation capabilities, the 
pipeline also functions as a data profiling tool that can 
generate metadata-rich summary data for new datasets. 
These summaries, including frequency distributions, 
statistical moments, or TF-IDF vectors, can detect 

anomalies, validate input data streams, or track pattern 
changes. When supplemented with historical baseline or 
comparison features (e.g., using the DISS metric 
mentioned in the previous study), the system can act as a 
data quality monitoring utility that flags data structure or 
content inconsistencies, thereby supporting data 
governance efforts. 
C. Transformation latency. The mechanisms for 
determining variable types and constructing a compact 
representation in this pipeline are similar to those used in 
typical preprocessing in machine learning tasks. Due to this 
similarity, the system can be easily integrated with ML 
pipelines and immediately receive ready-to-train, validated 
feature sets at the output [17]. 

With minor adjustments, the pipeline can be extended 
to include functions such as feature selection, encoding, 
normalization, or even label generation, which is fed into 
subsequent training processes in environments based on 
SageMaker, Databricks, or Kubernetes. 
D. Real-time and streaming extensions. While the existing 
pipeline is tailored for batch processing, its modular 
structure allows future connections to real-time data 
sources. AWS-native services such as Amazon Kinesis, 
MSK (Managed Kafka), or AWS Lambda can run 
lightweight, low-latency transformations on incoming 
records, and compression and storage are managed 
asynchronously in micro-batches. It will enable streaming 
transformation of log data, click activity, IoT telemetry, or 
social media interactions, meeting the needs of 
applications for fraud detection, operational monitoring, or 
customer behavior analytics. 
E. Multi-cloud and hybrid deployment. The current version 
is AWS-centric, but the tech is agnostic (Airflow and 
Spark). With minimal configuration, the pipeline can also 
be deployed to Google Cloud Dataproc or Azure Synapse! 
- or to an on-premises Spark cluster. It can be easily 
orchestrated by Airflow (running on Kubernetes) or linked 
with CI/CD for degrees of automation, flexibility, etc. This 
flexibility results in portability across any environment, 
which is particularly useful for organizations that leverage 
hybrid or multi-cloud infrastructures. The consequence is 
less lock-in to one cloud provider and more freedom in 
configuration. 

VIII. CONCLUSION 
This paper presents a cloud-native data transformation 

pipeline that can transform raw formats such as CSV and 
JSON into high-performance columnar structures, such as 
Parquet and ORC, in a scalable and automated manner. 
With a modular architecture and management via Apache 
Airflow, the system combines distributed processing on 
Amazon EMR with robust metadata management and data 
access via AWS Glue and Amazon Athena. The 
framework's design is driven by goals of efficiency, fault 
tolerance, data distribution, and heterogeneity, providing 
ready access to large data sets. 

Empirical testing on financial data validated the 
substantial advantages of our approach: directly loading in 
economic data, we achieved more than 5x compression 
compared to Parquet and ORC, and gained 6x speedup for 
queries running on Amazon Athena from raw data. 
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Moreover, with the integration to Apache Airflow, we 
achieved high stability, transparency, and ticketing of 
executions, which we needed to be able to use in 
production. 

It is important to emphasize that the data was preserved 
in accordance with its original structure and semantics 
during the transformation. Integrity control, value loss 
prevention, time stamp preservation, and numeric field 
accuracy were all checked. This method achieves excellent 
storage efficiency while preserving analytical reliability by 
guaranteeing that the data is still appropriate for precise 
analytical processing even after extensive compression. 

The flexibility and scalability of the proposed pipeline 
significantly expand its application capabilities. In addition 
to fundamental transformation and compression, the 
system can be extended for data profiling, anomaly 
detection, feature generation for machine learning models, 
or real-time streaming data processing. Building on open 
source software and cloud means the solution can evolve 
with infrastructure needs and the latest thinking in data 
engineering. Finally, the solution implementation is 
reproducible, productive, and cost-effective for businesses 
looking to modernize their data transformation practices. 
Future work will focus on supporting streaming 
processing, schema versioning, anomaly detection tools, 
and a real-time monitoring dashboard to make the system 
more convenient in a complex and dynamic data 
ecosystem. 
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Інформаційна технологія для стиснення та 
перетворення даних за допомогою Amazon EMR 
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АНОТАЦІЯ Із зростанням обсягів обробки даних у різних сферах зростає й попит на застосунки, здатні ефективно 
управляти, опрацьовувати та трансформувати великі масиви інформації. Сучасні підходи до зберігання та обробки 
великих обсягів даних здебільшого базуються на універсальних текстових форматах, таких як CSV та JSON. Їхня 
популярність пояснюється простотою інтеграції та сумісністю з широким спектром програмних засобів. Проте під час 
роботи з великими наборами даних ці формати демонструють низьку ефективність, особливо при виконанні 
аналітичних запитів або масштабуванні систем. Відсутність вбудованої компресії, рядкова структура та нестача 
метаданих призводять до значних витрат часу й обчислювальних ресурсів, що створює суперечність між вимогами до 
швидкості й економічності обробки та технічними можливостями традиційних текстових форматів. Альтернативою 
виступають колонкові формати зберігання, такі як Parquet та ORC, які використовують компактну структуру, 
оптимізовану для швидких аналітичних запитів у розподілених обчислювальних середовищах. Завдяки вбудованим 
механізмам стиснення, ефективному кодуванню та індексації вони забезпечують значне зменшення обсягів даних і 
прискорюють обробку. Метою цього дослідження є розробка та експериментальна перевірка технології 
автоматизованого перетворення даних із неефективних текстових форматів у формати Parquet та ORC із 
використанням Apache Airflow та Amazon EMR. Запропонована архітектура передбачає створення хмарного 
пайплайна, що виконує конверсію даних і подальше збереження у форматах, орієнтованих на аналітичні 
навантаження. Система реалізована з використанням Apache Airflow для оркестрації процесів, Amazon EMR та Apache 
Spark для розподіленої обробки, AWS S3 як масштабованого сховища, AWS Glue для управління метаданими та Amazon 
Athena для SQL-доступу до перетворених даних. Такий підхід вирішує проблеми продуктивності, пропонуючи гнучке, 
надійне та економічно ефективне рішення, здатне адаптуватися до різних робочих сценаріїв і навантажень. 

КЛЮЧОВІ СЛОВА інформаційна технологія, AWS, великі дані, розподілена обробка, стиснення даних. 
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