

p-ISSN 2786-8443, e-ISSN 2786-8451, 01004 (8) |Yuriy Fedkovych Chernivtsi National University|www.chnu.edu.ua

2025 Vol 3, No 1

https://doi.org/10.31861/sisiot2025.1.01004

Received 14 May 2025; revised 07 June 2025; accepted 08 June 2025; published 30 June 2025

Information Technology for Data Compression
and Transformation by Means of Amazon EMR

Yevhen Kyrychenko1,* and Igor Malyk2
1Software Engineering Department, Yuriy Fedkovich Chernivtsi National University, Chernivtsi, Ukraine

2Department of Mathematical Problems of Control and Cybernetics, Yuriy Fedkovych Chernivtsi National University, Chernivtsi, Ukraine

*Corresponding author (E-mail: kyrychenko.yevhen@chnu.edu.ua)

ABSTRACT As data processing volumes grow in various fields, the demand for applications capable of efficiently managing,
processing, and transforming large amounts of information is also increasing. Modern approaches to storing and processing
large amounts of data are primarily based on universal text formats, such as CSV and JSON. Their prevalence can be explained
by their compatibility with a wide range of software tools and ease of integration. These formats are inefficient when dealing
with massive volumes of data, particularly when scaling systems or executing analytical queries. The lack of built-in
compression, row structure, and metadata leads to significant time and computing resources, which creates a conflict
between the requirements for speed and cost-effectiveness of processing and the technical capabilities of traditional text
formats. Columnar storage formats, such as Parquet and ORC, offer an alternative. They employ a compact structure tailored
for quick analytical queries in distributed computing settings. Effective coding, indexing, and built-in compression techniques
considerably lower data sizes and speed up processing. This research aims to develop and experimentally verify the
technology of automated data conversion from inefficient text formats to Parquet and ORC formats using Apache Airflow
and Amazon EMR. The proposed architecture involves creating a cloud pipeline that performs data conversion and
subsequent storage in formats focused on analytical workloads. The system uses Apache Airflow for process orchestration,
Amazon EMR and Apache Spark for distributed processing, AWS S3 as scalable storage, AWS Glue for metadata management,
and Amazon Athena for SQL access to transformed data. This approach solves performance problems by offering a flexible,
reliable, cost-effective solution that adapts to different work scenarios and workloads.

KEYWORDS information technology, Big Data, AWS, distributed processing, data compression.

I. INTRODUCTION
s modern approaches to storing and processing large
amounts of data are mostly based on universal text
formats, such as CSV and JSON. These formats are

popular because they integrate easily and work well with
a wide range of software tools. However, when dealing
with large datasets, their efficiency drops especially for
analytical queries or when scaling systems. Without built-
in compression and with data arranged in a way that’s not
optimized for column-based access, they end up
consuming far more time and computing resources than
necessary. Thus, a contradiction arises between the
growing requirements for the speed and efficiency of
information processing and the technical capabilities of
traditional text formats.

The purpose of this study is to develop and
experimentally verify the technology of automated data
conversion from inefficient text formats to columnar
storage formats, in particular Parquet and ORC, using
Apache Airflow and Amazon Elastic Map Reduce
(EMR). It is assumed that such a solution will
significantly increase the performance of analytical
queries, as well as reduce the cost of storing and
processing information in the cloud environment.

This research examines the main drawbacks of CSV
and JSON formats when handling large-scale data and
explores the advantages of columnar formats designed for
analytical workloads. Building on this analysis, we

created a cloud-based pipeline that automatically
transforms data and saves it in Parquet and ORC formats.
It operates within the AWS environment, with Apache
Airflow handling workflow orchestration and Amazon
EMR managing the distributed data processing.

As the amount of data that companies process grows,
there is a demand for tools that can handle and process
large data sets. CSV and JSON formats are the most
popular and commonly used data formats. However, they
fail to provide usable and efficient data representation for
scalable analysis, as they do not compress, have a string-
based format and provide no built-in metadata. Instead,
Parquet and ORC shall be compact, columnar, and
optimized for analytical query performance in a
distributed computing environment [1, 2]. Here, we
report the development of a cloud-based pipeline
intended to facilitate the conversion of raw data to these
alternative, more analytically friendly representations.
This system is built on top of state-of-the-art technologies
such as Apache Airflow for orchestration [3], Amazon
EMR with Apache Spark for distributed processing [4],
AWS S3 for scalable storage [5], AWS Glue for
maintaining metadata [6], and Amazon Athena for
querying transformed data using SQL [7]. This
implementation provides a performance solution that is
both cost-effective and scalable, that can be easily
monitored, and is also flexible across a multitude of
workloads [8].

A

2
Vol 3, No 1, Paper 01004, pp. 1-8 (2025)

SISIOT Journal | journals.chnu.edu.ua/sisiot

II. SYSTEM ARCHITECTURE
A cloud-based pipeline was created for data processing,

which is easily scalable and works almost without human
intervention. Each component performs its straightforward
task – it is responsible for managing, launching, and
optimizing the entire process. As shown in Figure 1, the
whole architecture combines AWS services and open
source tools, making the system stable, efficient, and easy
to use.

FIG. 1. System Architecture.

A. Data Acquisition and Storage. It starts with storing raw
files – usually CSV or JSON – in Amazon S3. This storage
acts as a kind of “gateway” for the data and as a buffer
before further processing. To ensure that the pipeline runs
automatically and without failures, the folder structure in
S3 is designed so that the names immediately show
essential information: where the data came from, when it
arrived, and what it contains. This allows the system to
“understand” what it is dealing with and run the right
processing logic.

We chose Amazon S3 because it is stable, easily
scalable, and integrates well with other AWS services. In
addition, it has such useful features as file versioning,
flexible access control, and object change events – all of
which are very helpful in tracking where the data came
from and ensuring stable and repeatable processing [5].
B. Process Orchestration with Apache Airflow. After data
is placed in Amazon S3, the orchestration layer
implemented with Apache Airflow monitors the
appearance of new files in the storage. A Directed Acyclic
Graph (DAG) is activated when a new object is detected,
initiating a specific processing task sequence. Each DAG
execution is configured with the specified parameters,
allowing the workflow to dynamically adapt to various data
formats and sources [3].

When a new file is detected, Airflow starts a
transformation process that creates an EMR cluster,
launches a Spark application, and logs the results. Airflow
has a flexible architecture, so it can automatically repeat
tasks in case of errors, run multiple tasks simultaneously,
and send notifications in real time. It gives you complete
control over how data processing is going. All important
details – such as task statuses and logs – are stored in its
metadata, so monitoring and auditing the system is
relatively easy.

This orchestration allows you to process data quickly
and efficiently. It also scales easily, allowing multiple
workflows to run in parallel for different data sources.

C. Distributed Processing with Spark on Amazon EMR. The
pipeline's backbone is the transformation logic developed
using PySpark running on an Amazon EMR cluster. EMR
is a managed service for Hadoop and Spark that enables
scalable and fault-tolerant processing of large data sets [9].
Using Spot Instances and auto-scaling, the system reduces
costs while maintaining performance [10].

PySpark tasks:
• Read raw input data from S3;
• Clean and normalize data (remove empty lines,

address missing values, remove unwanted characters);
• Determine variable types (e.g., numeric, categorical,

boolean, text, timestamp);
• Generate concise representations (e.g., statistical

summaries, frequency tables, TF-IDF vectors);
• Write transformed data to columnar formats.
The power of Spark allows the system to process

terabytes of data efficiently, executing tasks in parallel on
multiple nodes. Intermediate transformations are cached in
memory when necessary to improve execution efficiency.
D. Compact Storage in Parquet and ORC. After
transformation, the resulting datasets are serialized into
columnar formats, such as Apache Parquet or ORC, and
stored in a designated source storage on S3. These formats
were chosen because they:

• Offer columnar storage that allows for fast and
selective reads;

• Include built-in compression (Snappy, ZSTD).
Storing data in Parquet or ORC formats reduces file

size and speeds up analytical queries. To make it easier to
navigate the data, we use a standardized file and folder
naming scheme – they encode where the data came from,
when it was processed, and which version of the schema
was used. It greatly facilitates control, auditing, and
maintaining cleanliness in the system.
E. Metadata Integration with AWS Glue and Query Access
with Athena. Each transformed dataset is automatically
registered in the AWS Glue metadata catalogue to simplify
queries and integrate with analytics tools. Glue acts as a
centralized repository that stores information about
schemas, partitions, and physical locations of files. Once
registered, the data becomes available for instant querying
through Amazon Athena, a serverless SQL engine that
operates directly on data in S3 using standard SQL syntax.
This approach avoids additional ETL steps or deploying a
traditional DBMS. As a result, analysts, data scientists, and
other services can quickly and cost-effectively access
stored data.

III. DATA PROCESSING WORKFLOW
The data processing process is at the heart of the

pipeline, which transforms raw files into clean, structured,
and query-ready formats. This process includes validating
the data, standardizing it, adding valuable context, and
transforming it into efficient columnar formats. The entire
module was implemented as a distributed PySpark
application and is fully managed by Apache Airflow. It is
built to handle a wide range of data sources and is designed
for scalability and fault tolerance when running on Amazon
EMR.

3
Vol 3, No 1, Paper 01004, pp. 1-8 (2025)

SISIOT Journal | journals.chnu.edu.ua/sisiot

A. Raw Data Loading and Preprocessing. When a new data
file is uploaded in Amazon S3, the DAG in Apache
Airflow detects it and triggers an Amazon EMR cluster and
delegates the processing tasks using PySpark. The first step
is to load the file using Spark’s built-in CSV or JSON
readers optimized for distributed parsing. The system is
able to handle correctly:

• files with or without headers;
• non-standard delimiters and encodings;
• missing or NULL values;
• partially corrupted or noisy records.
Data cleaning occurs immediately after loading and

involves removing all extraneous whitespace and control
characters, standardizing field delimiters, and replacing
missing or incorrect values with predefined or statistically
valid ones (e.g., median for numeric variables or mode for
categorical variables).

This preprocessing step provides a consistent and clean
foundation for subsequent analytical analysis and data type
determination.
B. Variable Type Inference. A critical workflow component
is the identification and classification of variable types.
Each column in the dataset is individually examined using
heuristic and statistical methods to determine its semantic
type. The pipeline covers the following categories:

• Boolean: Binary values such as True/False, 1/0, or
Yes/No;

• Factorial/Categorical: Columns that contain a limited
set of unique values with low cardinality (e.g., product
types, country codes);

• Numeric: Integers or floating-point numbers that
represent measured quantities;

• Temporal: Strings or numbers that can be converted
to standard date and time formats;

• Text/String: Free text that can be structured (e.g.,
product IDS) or unstructured (e.g., descriptions,
comments).

The column type is determined based on several
statistical characteristics, including the number of unique
values, entropy, average string length, and the rate of
successful casts to a particular type. For example, a column
is classified as categorical if the number of unique values
does not exceed 20 and the entropy remains low. Instead, a
column is temporal if its values conform to known date and
time formats and demonstrate regularity of intervals.

This classification is the basis for applying aggregation
and vectorization methods, allowing you to preserve the
meaningful data load while reducing its dimensionality.
C. Building a Compact Representation. Once the system
has figured out the datatypes of the variables, it creates a
compact but data-rich summary for each column within
the dataset. These representations are chosen based on
criteria to facilitate subsequent analysis and minimize data
that should be stored, but the content is preserved:

• Boolean and Categorical: The count and proportion
are calculated for each unique value to build the frequency
distribution. It helps detect class imbalance or categorical
skew;

• Numeric: The pipeline calculates statistics such as
mean, standard deviation, minimum, maximum, and
variance. In addition, percentiles or histograms can be

created for skewed distributions;
• Temporal: Temporal variables are segmented into

hourly, daily, or monthly intervals, and the resulting time
series is converted to a histogram of events. Temporal
patterns and anomalies can be found more easily with it;

• Text/String: The system uses TF-IDF (Term
Frequency – Inverse Document Frequency) vectorization
for unstructured text. It produces sparse feature vectors
which highlight semantically important words in the
collection. The TF-IDF matrix is limited, so it consumes
less memory [11].

The output is a more complex and smaller original data
structure suitable for machine learning, outlier detection
and data quality evaluation tasks.
D. Compaction and Serialization. Once the compact views
are ready, the next step is compressing and storing the data
in an analytics-friendly columnar format. Apache Parquet
or ORC are most commonly used for this, both of which
have their advantages:

• There is built-in compression (such as Snappy or
ZSTD) that reduces the size of the files;

• Complex data structures and types are supported;
• The formats are compatible with popular analytics

tools such as Athena, Presto, or Redshift Spectrum.
All prepared files are stored in Amazon S3 in clearly

structured folders. The file names and paths include
information about where the data came from, when it was
processed, and which schema version was used. This
simplifies tracking change history and allows you to
manage different versions easily. And if you need to work
with large volumes, you can additionally partition the data,
which significantly speeds up analytical queries.
Additional partitioning can be applied to speed up
analytical queries on extensive data.

IV. AUTOMATION AND ORCHESTRATION
WITH APACHE AIRFLOW

Automation is a fundamental principle in modern data
engineering pipelines. Within this framework, Apache
Airflow functions as the primary orchestrator that manages
the complete data processing lifecycle, from input
discovery to final output logging. Airflow provides the
planning, execution, and dependency management
necessary to ensure consistent, reproducible, and scalable
execution of data processing workflows.
A. The Role of Airflow in the Pipeline. Apache Airflow
plays a crucial orchestration role in the given architecture
by constantly observing the status of the specified Amazon
S3 bucket looking for new raw files. By detecting one or
more new entities a pre-defined DAG is automatically
triggered that includes the full logic controlling how to start
the transformation of the data. The DAG also serves to
orchestrate the execution of tasks, to keep them ordered
and to provide them with the full access to the input
resources ever at their point of work [12].

There are several significant benefits to using airflow
here:

• Decoupled logic: The different parts of the workflow
(i.e., cluster creation, submission of the job, the metadata
registration) were written as individual tasks;

• Retries and error handling: If an error occurs during a

4
Vol 3, No 1, Paper 01004, pp. 1-8 (2025)

SISIOT Journal | journals.chnu.edu.ua/sisiot

task execution – for example, due to a short-term network
outage or incorrect input – Airflow will automatically try
to run it again, guided by the specified rules;

• Execution transparency: All the information of task
status, execution time, logs, errors is kept inside Airflow’s
storage, so you can know the details of what’s happening
in the system.

This modular task structure leads to ease of
maintenance, and the declarative DAG nature of the it
enhances visibility and auditability.
B. DAG Execution Flow. A typical Airflow DAG in this
pipeline consists of the following sequence of tasks:

1. S3 Sensor Task: Monitors the arrival of new files to
a specified S3 path. It can be configured using regular
expression filters, object size conditions, or time window
specifications.

2. Cluster Provisioning Task: Initiates a temporary
Amazon EMR cluster with configuration parameters,
including instance type, point-to-point or on-demand
options, autoscale policies, and upload actions.

3. Spark Job Submission Task: Submits a PySpark job
to the EMR cluster, pointing to a script or application
stored in S3. The job parameters can be dynamically
generated based on metadata extracted from the file path or
its contents.

4. Job Monitoring Task: Polls the EMR cluster to track
the progress of the Spark job. Airflow can trigger an alert
or escalate it to a backup engine if the job fails.

5. Validate results: The system verifies that the
required source files appeared in S3, in the correct format,
and where they should be.

6. Register with Glue: The API calls AWS Glue to
register or update the schema and data storage location,
allowing them to be conveniently queried through Amazon
Athena.

7. Cluster Dismantle Task: Shuts down the EMR
cluster to prevent unnecessary overhead if automatic
shutdown was not configured during setup.

A DAG can also have conditional branching, parallel
sub-DAGs, or cross-DAG triggers in more complex
deployments, allowing for the orchestration of multiple
datasets or related ETL stages.
C. Parameterization and Dynamic Configuration.
Airflow’s support for templates and environment variables
allows the pipeline to be parametric and adaptable to
different input characteristics or processing needs without
changing the DAG logic. For example:

• A file path such as s3://raw-data/logs/2025/05/04/ can
be parsed to obtain dataset metadata (e.g. date, domain);

• File-specific schemas, transformation instructions, or
cluster size parameters can be injected at runtime;

• Multiple DAGs can be created from a single template
to facilitate parallel processing different datasets or
business units.

This design promotes reuse and reduces duplication.
D. Monitoring and Alerting. Another essential aspect of
maintaining a stable pipeline in production is the
operational visibility of the whole execution. Airflow
provides adequate monitoring tools that can be accessed
via the web interface or REST APIS provided or integrated
with other services, such as Prometheus, Slack, or

PagerDuty.
It possesses the following features: real-time

visualization of the DAG execution, detailed logs of every
task, including stdout and error streams, email or webhook
notifications in achieving SLA or errors export metrics for
the dashboards and monitoring systems, etc.

These tools allow the engineering teams to provide
control over all the execution stages and react rapidly to
any issue before it can influence the business processes,
which ensures excellent reliability and controllability of
the whole pipeline.

V. EVALUATION METHODOLOGY
The Evaluation Methodology was developed to

measure the proposed data transformation pipeline's
efficiency, performance, and cost-effectiveness. It includes
measuring the primary metrics, such as the amount of data
stored following the processing, the execution of
transformation time, the processing of analytical queries
when ready, and the financial cost for the computational
resources.

This data was collected using a combination of
empirical benchmarks, built-in monitoring and analytics
tools from the AWS arsenal. The testing was conducted in
conditions as close to real-world use as possible: with
typical datasets, typical load processes, and configurations
of Amazon cloud services.
A. Datasets and Experimental Configuration. The
evaluation applied stock trading time series data sets
obtained from open financial platforms [13]. The topic was
trading information for the shares of Apple and Tesla over
several trading sessions. These datasets were chosen as
they were semi-structured, numeric measures and
timestamps, and found to be most interesting for testing
analytical queries. Each dataset was uploaded to Amazon
S3 in CSV format and ran in the described pipeline above.
The Spark-based transformation workflow was executed
on an Amazon EMR cluster with the following
configuration:

• Cluster type: EMR transient (auto-terminated);
• Node configuration: one primary node, 2-4 primary

nodes (m5.xlarge), with auto-scaling enabled;
• Spark executor memory: 4 GB;
• File sizes: 100 MB – 1 GB for each dataset.
Output files were generated in Parquet and ORC

formats for benchmarking. All executions were fully
automated using Apache Airflow data groups. In multi-
cloud deployments, the pipeline can integrate with systems
like Cassandra for persistent NoSQL storage [14].
B. Key Evaluation Metrics. The following four categories of
metrics were established to evaluate the system at both the
functional and operational levels:

Storage Size Reduction. The original file size (CSV)
ratio to the compressed Parquet or ORC file size was
calculated to assess the compression efficiency. This
metric is vital for understanding the long-term storage
savings and the reduction in input/output in subsequent
queries.

Compression Ratio = CSV_Size / Parquet_Size/ORC.
Transformation Latency. The transformation latency

quantifies the time from file detection to completing the

5
Vol 3, No 1, Paper 01004, pp. 1-8 (2025)

SISIOT Journal | journals.chnu.edu.ua/sisiot

PySpark job, including cluster startup, processing, and
output recording. Latency was documented using:

• Airflow job logs and execution timestamps;
• CloudWatch EMR job monitoring (step start/stop

time).
This metric is crucial for assessing the throughput of

the pipeline and its applicability for near-real-time
operations or daily batch operations.

Query Speed. To analyze the improvements in
analytical performance, identical SQL queries were
executed on raw CSV data and compressed Parquet/ORC
data using Amazon Athena. The queries included:

• SELECT with WHERE filters based on numeric
ranges;

• Aggregations (AVG, MAX, MIN);
• Slices and groupings based on dates.
The Athena query execution time and the amount of

data scanned were recorded for each execution.
Cost Analysis. The pipeline's financial impact was

monitored using the AWS Billing and Cost Explorer
dashboards. It included:

• EMR Costs: Billing for cluster execution (EC2, EBS,
and Spark overhead);

• S3 Storage: Before and after data compression;
• Athena Query Costs: Estimated based on data scanned

for each query.
Where possible, cost optimization techniques (such as

point instances and automatic cluster termination) were
used and their impact was documented.
C. Metrics Collection Tools. Metrics data were collected
from multiple sources to ensure accuracy and
reproducibility:

• Metric Source;
• Storage Size S3 Object Metadata;
• Job Latency Airflow Logs, CloudWatch Metrics;
• Query Performance Athena Execution Logs [15];
• Cost and Usage AWS Billing Dashboard;
• Resource Utilisation EMR Metrics, Spark UI.

VI. RESULTS AND DISCUSSION
Practical testing showed that data is stored more

efficiently, queries are executed much faster, and the
system operates stably even with increased load. Such
achievements indicate the practical reliability and
feasibility of implementing the proposed architecture in
environments close to real production, considering modern
requirements for processing large volumes of data. The
following sections present a detailed analysis of the results
in four key areas: storage reduction, transformation
latency, query performance, and financial efficiency.
A. Storage optimization. One of the most significant results
of the applied transformation method was a significant
reduction in data volumes by moving from raw CSV to
columnar storage formats. As shown in Table 1, the
transformation to Parquet and ORC formats allowed
compression ratios of 3.5× to 5.2×, which varied according
to the structure and level of redundancy in the initial data
sets.

After analyzing the data we received, we see that
Apple's daily dataset, which initially had a size of 412 MB
in CSV format, was reduced to 87 MB in Parquet format

and 79 MB in ORC format. Similarly, Tesla's dataset was
reduced from 398 MB to 114 MB (Parquet) and 98 MB
(ORC). In addition to optimizing disk space use, the
storage size reduction decreased the volume of data
transported during analytical query execution, which
decreased expenses and improved processing performance.

TABLE 1. Compression Performance of Parquet and ORC.

Dataset Format
Original

Size (CSV)
Compressed

Size
Apple (daily) Parquet 412 MB 87 MB
Tesla (daily) Parquet 398 MB 114 MB
Apple (daily) ORC 412 MB 79 MB
Tesla (daily) ORC 398 MB 98 MB

Both Parquet and ORC did a good job of shrinking the
size of the data, although ORC was somewhat more
successful because of its more advanced encoding
techniques and integrated indexing. Both Parquet and ORC
did a good job of lowering the volume of data, but because
of its more advanced encoding techniques and integrated
indexing, ORC was marginally more effective. It improved
performance and decreased expenses by saving storage
space and transferring less data during analytical queries.
B. Transformation latency. The time it took to fully process
each dataset, from when the system detected it to when it
completed compression, varied slightly depending on how
quickly the clusters were started and how many resources
were allocated. On average, during testing, the
transformation latency was:

• Apple dataset (412 MB): ~5.2 minutes;
• Tesla dataset (398 MB): ~4.8 minutes.
Most of the execution latency was the time to deploy

the Amazon EMR cluster, which averaged about two
minutes. In contrast, the direct processing of the data using
Spark took between 2.5 minutes and 3 minutes for each
dataset. The results indicate the proposed pipeline's
suitability for daily batch transformations or even more
frequent updates in systems where real-time processing is
not required.

Analysis of Airflow logs showed stable performance at
the individual task level throughout all test runs. The
automated retry mechanism effectively compensated for
episodic delays in cluster initialization, which were
recorded in one of the nine tests.
C. Improved query performance. SQL queries executed
through Amazon Athena showed significantly improved
speed and cost-effectiveness when working with columnar
formats compared to regular CSV files.

TABLE 2. Formats for Apple and Tesla Datasets.

Query Type
CSV
(ms)

Parquet
(ms)

ORC
(ms)

Filter by date range +
aggregation

2350 580 490

Compute daily
averages

1970 490 465

Top N by volume 3120 610 540

Switching to storing compressed output instead of raw
input data provided an estimated 70% reduction in storage
costs in Amazon S3. Additionally, because of the reduced
amount of data to be scanned, query execution costs in

6
Vol 3, No 1, Paper 01004, pp. 1-8 (2025)

SISIOT Journal | journals.chnu.edu.ua/sisiot

Amazon Athena decreased by approximately 65%.
Implementing autoscaling and auto-termination of the
cluster reduced the compute costs in the Amazon EMR
environment to less than $0.25 per data set, even when
using temporary clusters.
D. Reliability and Observability. During testing, the
orchestration layer was implemented through Apache
Airflow reliably handled job launches, error handling, and
the entire DAG lifecycle. Airflow logs and metrics from
CloudWatch provided detailed insight into how individual
jobs performed and how efficiently resources were
utilised [16].

Key operational observations include:
• No manual intervention was required during
successful DAG execution;
• Automatic resolution of job failures (e.g., temporary
S3 access issues) through Airflow retries;
• Cluster auto-termination function worked as
expected, providing cost-effectiveness.
This observation confirm that the pipeline is well-

suited for production environments where automation,
error handling, and transparency are critical.

VII. PRACTICAL APPLICATION AND SCALABILITY
In addition to being good at transforming raw data into

a format that is easy to analyze, this pipeline is also very
flexible in its structure. It can be easily adapted to the needs
of any field that deals with large amounts of data. Due to
this versatility, the system is suitable not only for financial
or logistics tasks, but also for medicine, retail and many
other things. Such versatility makes the system useful and
scalable for multiple application scenarios – from finance
and logistics to healthcare or retail. Thanks to its modular
design, cloud infrastructure orientation, and integration
with popular opensource tools and native AWS services,
the system provides easy implementation into corporate
processes, compatibility with existing data processing
platforms, and support for modern operational analytics
practices.
A. Corporate data warehouse and analytics. The proposed
pipeline can be critically important in building a modern
data processing and storage architecture for organizations
that regularly receive large volumes of logs, transactional
data, or information from IoT devices. Converting raw
CSV or JSON files to Parquet, or ORC columnar formats,
reduces long-term storage costs. It significantly improves
the efficiency of analytical queries in systems such as
Amazon Athena, AWS Redshift Spectrum, or Spark SQL.

For example, financial companies that process large
volumes of daily trading transactions can use this pipeline
to automatically clean, compress, and log data to a
centralized metadata catalogue. It enables analysts to
perform near-real-time performance queries and historical
analysis with minimal latency and without infrastructure
expansion.
B. Data Quality Monitoring and Profiling. With built-in
variable classification and aggregation capabilities, the
pipeline also functions as a data profiling tool that can
generate metadata-rich summary data for new datasets.
These summaries, including frequency distributions,
statistical moments, or TF-IDF vectors, can detect

anomalies, validate input data streams, or track pattern
changes. When supplemented with historical baseline or
comparison features (e.g., using the DISS metric
mentioned in the previous study), the system can act as a
data quality monitoring utility that flags data structure or
content inconsistencies, thereby supporting data
governance efforts.
C. Transformation latency. The mechanisms for
determining variable types and constructing a compact
representation in this pipeline are similar to those used in
typical preprocessing in machine learning tasks. Due to this
similarity, the system can be easily integrated with ML
pipelines and immediately receive ready-to-train, validated
feature sets at the output [17].

With minor adjustments, the pipeline can be extended
to include functions such as feature selection, encoding,
normalization, or even label generation, which is fed into
subsequent training processes in environments based on
SageMaker, Databricks, or Kubernetes.
D. Real-time and streaming extensions. While the existing
pipeline is tailored for batch processing, its modular
structure allows future connections to real-time data
sources. AWS-native services such as Amazon Kinesis,
MSK (Managed Kafka), or AWS Lambda can run
lightweight, low-latency transformations on incoming
records, and compression and storage are managed
asynchronously in micro-batches. It will enable streaming
transformation of log data, click activity, IoT telemetry, or
social media interactions, meeting the needs of
applications for fraud detection, operational monitoring, or
customer behavior analytics.
E. Multi-cloud and hybrid deployment. The current version
is AWS-centric, but the tech is agnostic (Airflow and
Spark). With minimal configuration, the pipeline can also
be deployed to Google Cloud Dataproc or Azure Synapse!
- or to an on-premises Spark cluster. It can be easily
orchestrated by Airflow (running on Kubernetes) or linked
with CI/CD for degrees of automation, flexibility, etc. This
flexibility results in portability across any environment,
which is particularly useful for organizations that leverage
hybrid or multi-cloud infrastructures. The consequence is
less lock-in to one cloud provider and more freedom in
configuration.

VIII. CONCLUSION
This paper presents a cloud-native data transformation

pipeline that can transform raw formats such as CSV and
JSON into high-performance columnar structures, such as
Parquet and ORC, in a scalable and automated manner.
With a modular architecture and management via Apache
Airflow, the system combines distributed processing on
Amazon EMR with robust metadata management and data
access via AWS Glue and Amazon Athena. The
framework's design is driven by goals of efficiency, fault
tolerance, data distribution, and heterogeneity, providing
ready access to large data sets.

Empirical testing on financial data validated the
substantial advantages of our approach: directly loading in
economic data, we achieved more than 5x compression
compared to Parquet and ORC, and gained 6x speedup for
queries running on Amazon Athena from raw data.

7
Vol 3, No 1, Paper 01004, pp. 1-8 (2025)

SISIOT Journal | journals.chnu.edu.ua/sisiot

Moreover, with the integration to Apache Airflow, we
achieved high stability, transparency, and ticketing of
executions, which we needed to be able to use in
production.

It is important to emphasize that the data was preserved
in accordance with its original structure and semantics
during the transformation. Integrity control, value loss
prevention, time stamp preservation, and numeric field
accuracy were all checked. This method achieves excellent
storage efficiency while preserving analytical reliability by
guaranteeing that the data is still appropriate for precise
analytical processing even after extensive compression.

The flexibility and scalability of the proposed pipeline
significantly expand its application capabilities. In addition
to fundamental transformation and compression, the
system can be extended for data profiling, anomaly
detection, feature generation for machine learning models,
or real-time streaming data processing. Building on open
source software and cloud means the solution can evolve
with infrastructure needs and the latest thinking in data
engineering. Finally, the solution implementation is
reproducible, productive, and cost-effective for businesses
looking to modernize their data transformation practices.
Future work will focus on supporting streaming
processing, schema versioning, anomaly detection tools,
and a real-time monitoring dashboard to make the system
more convenient in a complex and dynamic data
ecosystem.

AUTHOR CONTRIBUTIONS
Ye.K. – methodology, software, validation,

investigation, writing-original draft preparation. I.M. –
conceptualization, supervision writing-review.

COMPETING INTERESTS
The authors declare no competing interests.

REFERENCES
[1] Apache Software Foundation, Apache Parquet

Documentation, 2023. [Online]. Available:
https://parquet.apache.org/

[2] D. J. Abadi, P. A. Boncz, and S. Harizopoulos, “Column-
Oriented Database Systems,” Proc. VLDB Endow., vol. 2,
no. 2, pp. 1664–1665, Aug. 2009, doi:
10.14778/1687553.1687609.

[3] Apache Software Foundation, “Apache Airflow
Documentation,” 2024. [Online]. Available:
https://airflow.apache.org/docs/

[4] Amazon Web Services, “Amazon EMR Developer
Guide,” 2023. [Online]. Available:
https://docs.aws.amazon.com/emr/

[5] Amazon Web Services, “Storage Best Practices for Data &
Analytics,” 2022. [Online]. Available:
https://docs.aws.amazon.com/whitepapers/latest/building-
data-lakes/

[6] Amazon Web Services, “AWS Glue Documentation,”
2023. [Online]. Available:
https://docs.aws.amazon.com/glue/

[7] Amazon Web Services, “Amazon Athena
Documentation,” 2023. [Online]. Available:
https://docs.aws.amazon.com/athena/

[8] M. Kleppmann, Designing Data-Intensive Applications:
The Big Ideas Behind Reliable, Scalable, and
Maintainable Systems, 1st ed. Sebastopol, CA: O’Reilly
Media, 2017.

[9] M. Armbrust et al., “Spark SQL: Relational Data
Processing in Spark,” in Proc. ACM SIGMOD Int. Conf.
Manage. Data, 2015, pp. 1383–1394, doi:
10.1145/2723372.2742797.

[10] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker,
and I. Stoica, “Spark: Cluster Computing with Working
Sets,” in Proc. 2nd USENIX Conf. Hot Topics in Cloud
Computing (HotCloud), 2010.

[11] Y. Mercadier, “Distance Measures for Probability
Distributions,” 2022. [Online]. Available:
https://distancia.readthedocs.io

[12] U. Kiran and J. Murphy, Building Production Pipelines
with Apache Airflow. Birmingham, UK: Packt Publishing,
2020.

[13] M. Moazeni, “Automating Stock Market Data Pipeline
with Apache Airflow, Spark, Postgres,” Medium, 2023.
[Online]. Available:
https://medium.com/@mehran1414/automating-stock-
market-data-pipeline-with-apache-airflow-minio-spark-
and-postgres-b67f7379566a

[14] A. Lakshman and P. Malik, “Cassandra: A Decentralized
Structured Storage System,” ACM SIGOPS Oper. Syst.
Rev., vol. 44, no. 2, pp. 35–40, Apr. 2010.

[15] AWS Big Data Blog, “Best Practices for Using Amazon
Athena,” Amazon Web Services, 2020. [Online].
Available: https://aws.amazon.com/blogs/big-data/best-
practices-for-using-amazon-athena/

[16] Cloud Native Computing Foundation, “CNCF Cloud
Native Landscape,” 2022. [Online]. Available:
https://landscape.cncf.io/

[17] T. Chen and C. Guestrin, “XGBoost: A Scalable Tree
Boosting System,” in Proc. 22nd ACM SIGKDD Int. Conf.
Knowl. Discov. Data Min., 2016, doi:
10.1145/2939672.2939785.

Yevhen Kyrychenko
Kyrychenko Yevhen is currently a Ph.D.
student at the Department of Software
Engineering, Yuriy Fedkovych
Chernivtsi National University, Ukraine.
He received his B.Sc. and M.Sc. degrees
in Computer Science from Ivan Franko
National University of Lviv. His
research interests include cloud
computing, big data technologies, and
distributed systems.

ORCID ID: 0009-0005-6150-5410

Igor Malyk
Doctor of Physical and Mathematical
Sciences, Professor, Head of
Department of Mathematical Problems
of Control and Cybernetics, Yuriy
Fedkovych Chernivtsi National
University, Chernivtsi, Ukraine.
Field of scientific interests: stochastic
analysis, financial mathematics,
machine learning, simulation of random
processes.

ORCID ID: 0000-0002-1291-9167

8
Vol 3, No 1, Paper 01004, pp. 1-8 (2025)

SISIOT Journal | journals.chnu.edu.ua/sisiot

Інформаційна технологія для стиснення та
перетворення даних за допомогою Amazon EMR

Євген Кириченко1,*, Ігор Малик2
1Кафедра програмного забезпечення комп’ютерних систем, Навчально-науковий інститут фізико-технічних та комп’ютерних наук,

Чернівецький національний університет імені Юрія Федьковича, Чернівці, Україна
2Кафедра математичних проблем управління і кібернетики, Навчально-науковий інститут фізико-технічних та комп’ютерних наук,

Чернівецький національний університет імені Юрія Федьковича, Чернівці, Україна

*Автор-кореспондент (Електронна адреса: kyrychenko.yevhen@chnu.edu.ua)

АНОТАЦІЯ Із зростанням обсягів обробки даних у різних сферах зростає й попит на застосунки, здатні ефективно
управляти, опрацьовувати та трансформувати великі масиви інформації. Сучасні підходи до зберігання та обробки
великих обсягів даних здебільшого базуються на універсальних текстових форматах, таких як CSV та JSON. Їхня
популярність пояснюється простотою інтеграції та сумісністю з широким спектром програмних засобів. Проте під час
роботи з великими наборами даних ці формати демонструють низьку ефективність, особливо при виконанні
аналітичних запитів або масштабуванні систем. Відсутність вбудованої компресії, рядкова структура та нестача
метаданих призводять до значних витрат часу й обчислювальних ресурсів, що створює суперечність між вимогами до
швидкості й економічності обробки та технічними можливостями традиційних текстових форматів. Альтернативою
виступають колонкові формати зберігання, такі як Parquet та ORC, які використовують компактну структуру,
оптимізовану для швидких аналітичних запитів у розподілених обчислювальних середовищах. Завдяки вбудованим
механізмам стиснення, ефективному кодуванню та індексації вони забезпечують значне зменшення обсягів даних і
прискорюють обробку. Метою цього дослідження є розробка та експериментальна перевірка технології
автоматизованого перетворення даних із неефективних текстових форматів у формати Parquet та ORC із
використанням Apache Airflow та Amazon EMR. Запропонована архітектура передбачає створення хмарного
пайплайна, що виконує конверсію даних і подальше збереження у форматах, орієнтованих на аналітичні
навантаження. Система реалізована з використанням Apache Airflow для оркестрації процесів, Amazon EMR та Apache
Spark для розподіленої обробки, AWS S3 як масштабованого сховища, AWS Glue для управління метаданими та Amazon
Athena для SQL-доступу до перетворених даних. Такий підхід вирішує проблеми продуктивності, пропонуючи гнучке,
надійне та економічно ефективне рішення, здатне адаптуватися до різних робочих сценаріїв і навантажень.

КЛЮЧОВІ СЛОВА інформаційна технологія, AWS, великі дані, розподілена обробка, стиснення даних.

This article is licensed under a Creative Commons Attribution 4.0 International License.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

