Security
of Infocommunication Systems
and Internet of Things

2025 Vol 3, No 1

https://doi.org/10.31861/sisiot2025.1.01003

Received 03 May 2025; revised 19 May 2025; accepted 08 June 2025; published 30 June 2025

A Methodological Approach to Auditing Software
Engineering Practices in the Energy Sector

lhor Liutak™" and Zinoviy Liutak?

1Software Engineering Department, Ivano-Frankivsk National Technical University of Oil and Gas, Ivano-Frankivsk, Ukraine

2Information and Measurement Technologies Department, lvano-Frankivsk National Technical University of Oil and Gas, Ivano-Frankivsk, Ukraine

*Corresponding author (E-mail: ihor.liutak@nung.edu.ua)

ABSTRACT The growing complexity of software systems in the energy sector, particularly those involved in the management
of distributed and renewable energy resources, requires the introduction of structured and domain-specific auditing
methodologies. Ensuring the reliability, safety, and security of software products in this context is critical due to the increasing
dependence of industrial and energy infrastructures on automated and software-driven solutions. This paper proposes a
comprehensive methodological approach to auditing software engineering practices tailored to the needs of the energy
sector. The developed methodology is based on an integrated audit model that defines Process, Product, and Safety and
Security layers to enable a holistic and systematic evaluation. Furthermore, it incorporates a structured audit process aligned
with quality management principles, covering all essential stages from planning to follow-up. A key feature of the approach
is the mathematical formalization of audit activities, which includes models for estimating effort, measuring audit coverage,
analysing nonconformities, and evaluating process maturity. These models enhance the objectivity and analytical rigor of
audits, enabling organizations to quantify and compare results across projects and audit cycles. The proposed methodology
was developed based on a thorough analysis of international standards, including ISO/IEC 12207, ISO/IEC 25010, IEC 61508,
IEC 62443, and ISO 9001, and aims to bridge the gap between general software engineering requirements and domain-specific
needs related to functional safety, cybersecurity, and operational reliability. The results of this research contribute to the
advancement of audit methods in the field of software engineering and provide a scientifically substantiated and practically

oriented tool for improving the quality, security, and compliance of software systems used in the energy sector.

KEYWORDS software audit, energy sector, software engineering, functional safety, cybersecurity.

I. INTRODUCTION
he energy sector increasingly relies on complex
T software systems to monitor, control, and optimize
industrial processes. As these systems become more
integrated with critical infrastructure and data-driven
operations, ensuring their reliability, security, and quality
becomes paramount. This necessity places new demands
on software development practices, especially within
industrial domains where system failures can result in

significant economic, environmental, or safety
consequences. Consequently, the role of software
engineering audits is systematic evaluations of

development processes and outcomes. It has gained
importance as a means to enforce compliance with
standards and improve software quality. In industrial
settings, software audits must address not only traditional
aspects of code quality and process maturity but also
domain-specific requirements such as interoperability with
SCADA systems [1], compliance with regulatory
frameworks such ISO/IEC 12207 [2, 3], and robustness in
harsh operating environments [4]. However, the lack of
unified audit methodologies tailored to the energy sector
often leads to inconsistent or incomplete assessments. This
highlights a pressing need for a structured and standardized
approach to auditing that integrates software engineering
principles with the operational realities of industrial energy
systems.

The digitalization of the energy sector has introduced
new challenges in maintaining the quality, reliability, and

compliance of software systems that operate within
mission-critical environments. As software becomes a key
enabler of energy generation, distribution, and
consumption optimization, flaws in its development
process may lead to operational inefficiencies,
cybersecurity vulnerabilities, or even catastrophic failures.
Despite the critical nature of these systems, many energy
enterprises continue to lack formalized and domain-
specific mechanisms for auditing software development
processes. Therefore, the development of a methodological
approach to auditing is aligned with international software
engineering standards and tailored to the needs of the
energy sector. It remains a timely and necessary scientific
endeavour.

The purpose of this work is to develop and present a
methodological approach to auditing software engineering
practices in the industrial energy sector, with the aim of
enhancing quality assurance, ensuring regulatory
compliance, and improving the reliability of software-
intensive systems.

The main objectives of this research are to examine
existing software audit standards and approaches relevant
to industrial and energy-sector applications, and to identify
the specific risks and challenges that arise in the
development of software for critical energy systems. Based
on this analysis, the study aims to develop a clear and
structured methodology for auditing software engineering
practices, tailored to the needs of the energy sector. The
proposed method is intended to support practical

p-ISSN 2786-8443, e-ISSN 2786-8451, 01003 (11) | Yuriy Fedkovych Chernivtsi National University | www.chnu.edu.ua

SISIOT Journal | journals.chnu.edu.ua/sisiot

implementation through example-based demonstration and
to offer concrete recommendations for its integration into
existing quality management and compliance frameworks
used by energy companies.

Amoo et al. [5] developed a multicriteria framework for
assessing energy audit software used in residential
applications. Although the main context of their study is
different, the proposed evaluation criteria — including
usability, accuracy, and regulatory compliance provide
useful ideas for structuring software audits. The emphasis
on aligning software functionality with regulatory and end-
user needs is particularly applicable to auditing industrial
energy sector software, where similar concerns about
compliance and operational effectiveness exist. However,
the scope of the work is limited to residential energy
systems and does not consider the complexities of
industrial software development processes. Abbas et al. [6]
examined secure software development practices with a
focus on ensuring the reliability and integrity of critical
software systems. Their research highlights how process
audits and adherence to secure coding standards contribute
to reducing vulnerabilities, a priority that is also crucial in
the energy sector, where software failures can lead to major
disruptions. Although their study targets the banking
industry, the proposed secure development lifecycle
practices and audit mechanisms are broadly applicable to
other domains, including energy. However, it does not
discuss challenges such as interoperability with industrial
systems or operating in harsh physical environments. Jena
[7] investigated how blockchain technology could enhance
auditability and transparency in accounting processes,
using a multi-criteria decision-making framework. The
study introduces concepts such as immutable records and
decentralized validation, which could be adapted to
improve the traceability and reliability of software audits
in the energy industry. While the research focuses on
financial applications, its findings suggest potential
benefits for auditing software engineering processes,
particularly in enhancing trust and integrity. Nevertheless,
domain-specific requirements such as compliance with
industrial software standards and environmental robustness
were not addressed. Tucker [8] studied the influence of
software development methodologies on project success in
the automotive industry. The research provides insights
into how process choices affect the quality and reliability
of complex software products. These findings are relevant
to the energy sector, where selecting appropriate
development models and ensuring process adherence are
critical for producing dependable software. However, the
work does not focus on software auditing itself or on how
methodologies are verified or validated in regulated
industrial environments. Diyab et al. [9] explored the use
of engineered prompts in ChatGPT to support educational
assessment in software engineering. While the primary
focus is on academic applications, the research
demonstrates how Al-driven tools can be used to
systematically evaluate knowledge and processes. This is
relevant to software auditing, where automated reasoning
and assessment could enhance the objectivity and
efficiency of audit procedures. However, the study does not
address the industrial context or the requirements of

Vol 3, No 1, Paper 01003, pp. 1-11 (2025)

mission-critical ~software, which limits its direct
applicability to energy sector auditing. Ganapathy and
Sampath [10] conducted a systematic literature review on
regulatory and security compliance in cloud-based
software ecosystems. Their research synthesizes existing
standards, frameworks, and challenges related to ensuring
compliance in distributed and virtualized environments.
These insights are valuable for energy sector software
auditing, as many modern industrial applications
increasingly rely on cloud technologies. Nonetheless, the
reviewed works mainly focus on cloud computing and do
not fully address software quality assurance in embedded
or real-time systems typically found in energy
infrastructure. Sholihin and Salman [11] introduced
OSCAT, an automated tool designed for auditing against
CIS Benchmarks. This tool showcases the potential of
automation in the audit process, particularly in enhancing
consistency and reducing human error. For the energy
sector, adopting similar automation strategies could
significantly improve the reliability and repeatability of
software audits. However, OSCAT is specialized for
cybersecurity configurations rather than software
engineering process audits, limiting its immediate
applicability to broader software development quality
assessments. Terragni et al. [12] discussed future directions
in Al-driven software engineering, focusing on how
artificial intelligence can automate and optimize various
stages of the software lifecycle. Their work highlights
promising trends that could be integrated into audit
methodologies to enhance coverage, predictive
capabilities, and decision support. Nevertheless, while Al
offers transformative potential, the paper does not provide
specific strategies or guidelines for applying Al techniques
within audit frameworks for industrial software, leaving a
gap in practical implementation for energy-critical
systems.

Recent research highlights notable advancements in the
field of software auditing and quality assurance. Various
approaches have been proposed to enhance regulatory
compliance, improve process transparency, and introduce
automation into audit activities. Secure development
practices, automated assessment tools, and the integration
of Al-driven technologies have been recognized as
effective strategies to increase the reliability and
consistency of audits across multiple domains. These
developments demonstrate a growing recognition of the
importance of systematic and standardized approaches to
software evaluation. However, the majority of existing
solutions and methodologies remain largely focused on
general-purpose software, cybersecurity audits, and cloud-
based environments. As a result, they often overlook the
unique challenges associated with software developed for
industrial and energy sectors. In such domains, software
systems must not only meet conventional quality criteria
but also ensure seamless interoperability with control and
monitoring infrastructure, demonstrate robustness in harsh
operational conditions, and comply with strict domain-
specific standards and regulations. Furthermore, while
automation and artificial intelligence are increasingly
discussed in the context of software assessment, their
application to audit methodologies designed for mission-

SISIOT Journal | journals.chnu.edu.ua/sisiot

critical industrial software remains insufficiently explored.
These limitations underline the need for a dedicated
methodological approach to auditing software engineering
practices within the energy sector. Such an approach
should combine the principles of standardization,
verification, validation, and unification, while also
addressing the particular operational and regulatory
requirements of energy-related software. Filling this gap is
essential to achieving higher levels of audit consistency,
improving regulatory alignment, and enhancing the
dependability and safety of software solutions deployed in
critical energy infrastructures.

Il. REVIEW AND ANALYSIS OF INTERNATIONAL
STANDARDS RELEVANT TO SOFTWARE AUDITING IN
THE ENERGY SECTOR

Software engineering standards provide a universal
basis for ensuring consistency, quality, and traceability
throughout the software lifecycle. In the context of auditing
software engineering practices in the energy sector, they
help establish what processes should exist, how they
should be performed, and what criteria must be used to
verify outcomes. The following standards define key
methodologies, models, and frameworks that are
foundational for building an audit methodology.

ISO/IEC 12207 is the primary international standard
that defines the processes involved in the software
lifecycle, from conception to retirement [13]. It classifies
processes into primary life cycle processes (acquisition,
supply, development, operation, and maintenance),
supporting processes (documentation, configuration
management, quality assurance, verification, validation,
etc.), and organizational processes (management,
infrastructure). This standard is essential for audits because
it defines what processes should exist in any compliant
software organization. Auditors can use ISO/IEC 12207 as
a checklist for verifying process presence, adequacy, and
outcomes at each lifecycle stage. ISO/IEC 15288, although
broader, complements ISO/IEC 12207 by covering the
system lifecycle, not just software [14]. This is especially
important for the energy sector, where software is tightly
integrated with hardware and physical infrastructure
(SCADA, sensors, controllers). ISO/IEC 15288 defines
system-level processes such as stakeholder requirements
definition, system requirements definition, architectural
design, integration, verification, and validation. These
processes provide auditors with models for assessing how
software interacts within the broader energy system and
how well system-level requirements are traced and
satisfied. IEEE 730 focuses specifically on software
quality assurance (SQA) plans [15]. It offers guidance on
the preparation of SQA plans, detailing what should be
planned, monitored, and controlled during the software
development process. For audit purposes, IEEE 730 is
valuable because it formalizes the expectations for SQA
activities and provides criteria against which the
implementation of quality assurance procedures can be
assessed. IEEE 1012 defines the verification and validation
(V&V) processes for software [16]. It specifies how
independent assessment activities should be conducted to
determine whether software products and processes meet

Vol 3, No 1, Paper 01003, pp. 1-11 (2025)

their specified requirements and intended uses. In audits,
this standard provides a methodological basis for
evaluating the adequacy and independence of V&V
activities, which is critical for critical systems, including
those in the energy sector. ISO/IEC 25010 introduces the
quality model, defining software product quality attributes
such as functional suitability, performance efficiency,
compatibility, usability, reliability, security,
maintainability, and portability [17]. This standard does
not define process models, but it is essential in audits for
defining the criteria and metrics used when evaluating the
quality of software products produced by engineering
processes. It helps link process quality with product quality
outcomes. In summary, these standards together offer
auditors a structured framework for evaluating software
engineering processes and outcomes. ISO/IEC 12207 and
ISO/IEC 15288 establish comprehensive lifecycle process
models that define how software and systems should be
developed and maintained [14]. IEEE 730 and IEEE 1012
provide methodologies for assuring and verifying the
quality of both processes and products, while ISO/IEC
25010 offers criteria for assessing software product quality
[15, 16]. Collectively, these standards form the foundation
for audit methodologies aimed at ensuring compliance,
traceability, and reliability in software engineering
practices, particularly in critical sectors such as energy.
The key characteristics and audit-relevant features of each
standard are summarized in Table 1.

TABLE 1. Features of General Software Engineering and Lifecycle
Standards.

Proposes / Relevance for
Standard Scope Defines Audit
ISO/IEC Software Process Process
12207 lifecycle model and existence,
processes definitions adequacy, and
completeness
checks
ISO/IEC System System-level System
15288 lifecycle process integration and
processes model requirements
traceability
IEEE 730 Software SQA plan Planning and
quality structure and assessment of
assurance content QA activities
plans

IEEE 1012 Verification V&V process Independent

and methodology assessment of
validation software
processes conformity
ISO/IEC Software Quality Evaluation
25010 product model criteria for
quality (attributes, product audit
attributes metrics)

While general software engineering standards provide
a comprehensive foundation for defining lifecycle
processes and product quality attributes, they are not
sufficient by themselves when it comes to software
intended for critical energy infrastructure. In such
environments, software must satisfy strict requirements
related to safety, security, and overall process capability to

SISIOT Journal | journals.chnu.edu.ua/sisiot

ensure operational reliability and regulatory compliance.
To address these needs, a range of specialized standards
has been developed that extend beyond general software
lifecycle management. This group includes standards for
functional safety, cybersecurity for industrial control
systems, and process maturity assessment. The following
analysis highlights how these standards contribute to the
development of audit methodologies suited for software
engineering practices in the energy sector.

IEC 61508 serves as the foundational standard for
functional safety of electrical, electronic, and
programmable electronic safety-related systems [18]. It
defines a risk-based approach to determining Safety
Integrity Levels (SIL) and provides detailed guidance on
the lifecycle processes required to achieve the desired level
of safety. For software auditors, IEC 61508 offers criteria
for assessing whether software development processes
have adequately addressed safety planning, requirements
specification, design, implementation, verification,
validation, and maintenance. It emphasizes independence
in verification and documentation as part of demonstrating
compliance with safety objectives. IEC 62443 focuses on
the security of industrial automation and control systems,
which are central to energy sector operations [19]. This
standard provides a comprehensive framework for
addressing cybersecurity across system lifecycle phases,
including software development. It defines security levels,
security policies, secure coding practices, and validation
procedures necessary to mitigate cybersecurity risks. For
auditing purposes, IEC 62443 is essential for verifying that
software engineering processes incorporate security
requirements, conduct threat modelling, and apply secure
development practices suitable for critical infrastructure.
ISO/IEC 33001-33099 (formerly ISO/IEC 15504 or
SPICE) establishes a process assessment framework that
allows organizations to evaluate the capability and
maturity of their software processes [20]. It defines process
attributes and measurement scales, enabling systematic
assessment of how well processes are defined, managed,
and optimized. For software audits, these standards provide
a structured approach to measuring process performance
and identifying areas for improvement. CMMI (Capability
Maturity Model Integration), although not an ISO standard,
is a globally recognized model for process improvement
[21]. It offers detailed guidelines for assessing and
improving processes across various maturity levels, from
initial (ad hoc) to optimizing (continuous improvement). In
the context of audits, CMMI serves as a reference model
for evaluating process maturity, organizational readiness,
and adherence to best practices in software development.
Collectively, these standards address critical aspects of
software auditing in the energy sector. IEC 61508 and IEC
62443 offer domain-specific requirements for safety and
security, while ISO/IEC 330xx and CMMI provide
frameworks for assessing process capability and
improvement. Together, they enable auditors to evaluate
not only whether processes exist, but also whether they are
sufficiently robust, safe, secure, and capable of delivering
high-quality and compliant software. The main features
and audit-relevant contributions of these standards are
summarized in Table 2.

Vol 3, No 1, Paper 01003, pp. 1-11 (2025)

TABLE 2. Features of Functional Safety and Process Assessment
Standards.

Proposes / Relevance for
Standard Scope Defines Audit
IEC 61508 Functional Safety Assessment of
safety of lifecycle safety-related
industrial model, SIL, development
systems verification & and compliance
validation
criteria
IEC 62443 Cybersecurity Security Audit of
for industrial levels, secure cybersecurity
control development practices and
systems and secure software
validation development
ISO/IEC Software Process Evaluation of
33001- process attributes, process
33099 assessment assessment capability and
framework models maturity
CMMI Process Process Audit of process
improvement maturity organization,
and maturity levels, best performance,
model practices and
improvement
efforts

IIl. METHODOLOGY PRINCIPLES AND AUDIT MODEL

The analysis of international standards reveals that
effective auditing of software engineering practices in the
energy sector requires a comprehensive and systematic
approach. Given the critical role of software in ensuring the
safety, reliability, and efficiency of industrial energy
systems, the audit methodology must go beyond simple
checklist-based evaluations. It should integrate principles
of process maturity assessment, verification and validation,
functional safety, and cybersecurity, while ensuring
alignment with established software engineering lifecycle
models. Based on the reviewed standards, the proposed
audit methodology is structured around key principles that
reflect best practices in quality assurance and process
evaluation. These include process transparency,
traceability of requirements, conformance to safety and
security standards, and measurable assessment criteria for
product quality. The methodology is designed to assess
both the software development processes and the resulting
products, ensuring that they meet applicable regulatory
requirements and industry expectations. The audit model
adopts a layered structure that reflects the various levels of
assessment necessary for comprehensive evaluation. At the
foundational level, the existence and adequacy of defined
software processes are assessed, drawing from lifecycle
standards such as ISO/IEC 12207 and ISO/IEC 15288 [3].
At the next level, the focus shifts to the implementation and
effectiveness of quality assurance, verification, and
validation procedures, following guidelines from IEEE 730
and IEEE 1012. The highest level involves evaluation of
the software product itself, using ISO/IEC 25010 quality
attributes to judge functional suitability, reliability,
maintainability, and security. Additional layers address
domain-specific concerns such as functional safety (IEC
61508) and cybersecurity (IEC 62443), ensuring that the

SISIOT Journal | journals.chnu.edu.ua/sisiot

audit reflects the unique requirements of industrial energy
software. This structured approach provides a clear
framework for auditors, supporting consistent, objective,
and repeatable assessment processes. By synthesizing the
requirements of international standards into an integrated
audit model, the methodology aims to bridge the gap
between abstract standards and practical auditing tasks in
complex, safety- and security-critical environments such as
the energy sector.

In complex and safety-critical industries such as
energy, software auditing cannot rely on simple or isolated
evaluation techniques. Instead, a comprehensive approach
is required that considers multiple dimensions of software
engineering practices. To achieve this, the proposed audit
methodology is structured into layers, each designed to
focus on a specific aspect of the software development and
product lifecycle. The layered approach offers several
important advantages. First, it promotes clarity and
structure by dividing the audit into logical areas of focus.
This allows auditors to work systematically, without
overlooking important factors. Second, it supports
traceability and completeness, as each layer is aligned with
specific international standards and audit objectives. Third,
layering enables flexibility and scalability: auditors can
adjust the depth of analysis in each layer depending on the
criticality of the software and the context of the audit.
Finally, this approach ensures integration of domain-
specific requirements, particularly in relation to safety and
security, which are essential for energy sector applications.

Process Audit Layer. This foundational layer evaluates
whether software lifecycle processes exist, are adequately
documented, and effectively implemented within the
organization. Using standards such as ISO/IEC 12207 and
ISO/IEC 15288, auditors verify process completeness,
clarity, and conformity to established lifecycle models [3].
Additional process maturity frameworks such as ISO/IEC
330xx and CMMI are employed to assess how consistently
and efficiently these processes are managed and improved.
The outcome of this audit layer is an assessment of process
capability, maturity, and potential gaps that may affect
software quality and compliance.

Product Audit Layer. At this layer, the focus shifts from
process quality to evaluating the software products
themselves. Auditors use ISO/IEC 25010 quality attributes
such as functional suitability, reliability, performance
efficiency, maintainability, and security as criteria for
assessment. Product audits involve systematic testing,
verification, and validation according to IEEE 1012 and
ISO/IEC/IEEE 29119 guidelines. Auditors determine
whether the final software meets its specified
requirements, performs as expected in operational
conditions, and complies with quality criteria defined by
stakeholders and standards.

Safety and Security Audit Layer. Recognizing the
critical nature of software in energy systems, this layer
addresses domain-specific concerns such as functional
safety and cybersecurity. Safety audits use IEC 61508 to
assess whether adequate measures have been taken
throughout the software lifecycle to identify, control, and
mitigate safety-related risks. Security audits utilize IEC
62443 to evaluate how well cybersecurity requirements are

Vol 3, No 1, Paper 01003, pp. 1-11 (2025)

integrated into the software development process,
including secure coding practices, threat modelling,
security testing, and vulnerability management. This layer
ensures the audited software not only functions correctly
but also remain safe and secure under real-world
conditions.

The layered structure of the audit model ensures a
systematic and thorough assessment of software
engineering practices. Each layer addresses a specific
dimension from organizational processes and software
product quality to critical domain-specific aspects such as
safety and cybersecurity. This approach not only promotes
clarity and completeness but also allows auditors to adapt
the methodology to the unique needs of the energy sector,
where reliability, risk mitigation, and regulatory
compliance are of utmost importance. To illustrate how the
model integrates general audit principles with the specific
requirements of industrial energy applications, the key
features of the proposed approach and their domain
relevance are summarized in Table 3.

TABLE 3. Features of the Proposed Audit Model and Its Specific
Adaptation for the Energy Sector.

Specific Aspects for the
Energy Sector
Ensures comprehensive audit
coverage, including critical

Model Feature

Layered structure
(Process, Product,

Safety and Security) operational aspects
Process compliance Verifies process maturity and
assessment traceability essential for

(ISO/IEC 12207, regulated and mission-critical

ISO/IEC 15288, software

ISO/IEC 330xx,

CMMI)

Product quality Focus on reliability,
evaluation maintainability, and security
(ISO/IEC 25010) for long-term, continuous

operation

Safety assessment Mandatory consideration of

(IEC 61508) risk reduction, Safety Integrity
Levels (SIL), and independent
verification

Cybersecurity Focus on secure software

assessment development and resilience

(IEC 62443) against cyber threats in
industrial control
environments

Adaptability and Supports different levels of

scalability of audit criticality (e.g., SCADA vs

depth non-critical supporting
software)

Alignment with Facilitates integration with

organizational QMS certifications and inspections

and regulatory relevant to energy sector
requirements regulations

IV. AUDIT PROCESS STAGES
While the layered audit model defines what should be
evaluated, it is equally important to define how the audit
should be conducted. The audit process itself must follow
a structured set of stages to ensure consistency, traceability,
and completeness. Each stage serves a specific purpose and

SISIOT Journal | journals.chnu.edu.ua/sisiot

contributes to achieving the overall audit objectives. The
proposed audit methodology includes the following key
stages: Planning, Execution (Assessment), Analysis and
Reporting, and Follow-up and Improvement
Recommendations.

Planning. The audit process begins with thorough
planning, which defines the scope, objectives, and criteria
of the audit. During this stage, auditors identify the target
software systems, applicable standards, and specific
organizational and regulatory requirements. Planning also
involves assembling the audit team, determining audit
methods (document review, interviews, observations,
testing), and scheduling audit activities. Clear and detailed
planning ensures that the audit is aligned with
organizational goals and that all critical areas will be
covered.

Execution (Assessment). The execution stage involves
gathering and analysing evidence to assess the conformity
and effectiveness of software engineering practices. This
stage is conducted in alignment with the audit model

layers:
Process Audit: Auditors review documented processes,
procedures, and records. They assess process

completeness, adherence, and maturity using models such
as ISO/IEC 12207 and ISO/IEC 330xx [13, 20].

Product Audit: Auditors verify whether the software
meets specified quality attributes, using ISO/IEC 25010 as
a reference. This may include review of test results,
validation reports, and product documentation [17].

Safety and Security Audit: Auditors assess how well
safety and security requirements are integrated into the
development process and whether risk mitigation measures
comply with IEC 61508 [18].

During this stage, objective evidence is collected
through document analysis, interviews with project teams,
and observation of development and testing activities.

Analysis and Reporting. Following the assessment, the
gathered data is analysed to identify nonconformities,
weaknesses, and opportunities for improvement. The
findings are then compiled into an audit report. The report
should present:

1. Audit objectives and scope;

2. Summary of methods and evidence;

3. Findings for each audit layer (process, product,

safety/security);

4. Assessment of compliance with standards;

5. Recommendations for corrective and preventive

actions.

The report must be clear, objective, and well-
structured, serving as a formal record of the audit results.

Follow-up and Improvement Recommendations. The
final stage focuses on follow-up activities. Auditors should
verify that corrective actions have been planned and
implemented to address identified nonconformities.
Additionally, auditors may provide guidance for improving
process maturity and strengthening safety and security
practices. This stage ensures that the audit contributes not
only to compliance verification but also to the continuous
improvement of software engineering practices within the
organization.

While follow-up typically requires fewer resources

Vol 3, No 1, Paper 01003, pp. 1-11 (2025)

compared to earlier stages, its significance should not be
underestimated. Effective follow-up consolidates the
outcomes of the audit and directly influences long-term
process improvements. Based on the authors' experience
and observations from auditing software engineering
practices in industrial and energy-related projects, the
distribution of effort across the audit stages tends to follow
a stable pattern. Planning and analysis activities require
moderate time and focus, while assessment activities
consume the largest share of effort due to their complexity
and the necessity of comprehensive evidence collection
and verification. To illustrate this empirically derived
observation, Fig. 1 presents the approximate distribution of
effort across the main audit stages. The data reflects typical
audits conducted in critical industrial contexts, where
assessment plays the central role in ensuring process
integrity and product compliance. Although follow-up
represents a smaller proportion in terms of effort, it remains
an essential stage, closing the audit loop and promoting
continual improvement within audited organizations.

® Planning

Assessment
¢ Analysis & Reporting
Follow-up

FIG. 1. Approximate Effort Distribution Across Audit Stages.

While Fig. 2 presents the general distribution of effort
across all audit stages, it is important to recognize that the
emphasis and resource allocation may vary significantly
depending on the criticality of the software being audited.
In the energy sector, software systems range from non-
critical support applications to mission-critical control and
safety-related systems. This distinction has a direct impact
on the audit approach and effort distribution. Based on
practical experience and observations from conducted
audits, the allocation of audit effort shifts noticeably
between critical and non-critical software projects. For
critical systems, such as those involved in SCADA control
or safety shutdown functions, auditors tend to dedicate
significantly more time to the planning and assessment
stages. In such cases, more detailed planning is required to
understand regulatory requirements and define adequate
audit scopes. Furthermore, assessment activities become
more intensive, as verifying compliance with functional
safety (IEC 61508) and cybersecurity (IEC 62443)
standards demands deeper analysis and more extensive
evidence collection. In contrast, audits of non-critical

SISIOT Journal | journals.chnu.edu.ua/sisiot

software typically allow for a more streamlined approach,
where relatively less effort is needed for planning and
assessment, and more focus is placed on analysis,
reporting, and providing improvement recommendations.
To reflect these findings and to offer a visual comparison
of audit effort allocation, Fig. 2 presents the variation in
effort distribution based on software criticality. The chart
illustrates how critical software audits naturally demand a
higher share of time and resources in the initial stages,
driven by the need to ensure compliance with strict
domain-specific requirements. This differentiation
underlines the importance of tailoring the audit
methodology according to the nature and significance of
the audited software.
60 55

7 Non-Critical Software (%)

m Critical Software (%)

FIG. 2. Example of an image with acceptable resolution.

A. Mathematical Model of the Audit Methodology. To
support practical implementation and resource planning,
the audit effort may be expressed as a formal model.
Eq. (1) defines the total audit effort as the sum of efforts
across all audit stages and layers, weighted by importance
and adjusted for software criticality. This formulation
allows organizations to estimate and optimize audit
resources, and to adapt the methodology for different
software types. For example, audits of safety-critical
systems typically involve higher weight coefficients and a
criticality factor greater than one, reflecting the increased
depth and rigor of assessment required:

n_.m

EzZZ;WJ ‘D,,-C, (1
-1 =
where E is total audit effort, i is audit stage (planning,
assessment, reporting, follow-up), j is audit layer (process,
product, safety/security), W;; is weight coefficient for stage
and layer importance (based on experience or predefined),
Dj; is duration or effort factor (estimated time/resource
needs) for each stage/layer, C is criticality factor of the
software (e.g., | for non-critical, >1 for critical software),
n is total number of audit stages, m is total number of audit
layers.

While Eq. (1) defines the overall audit effort as a
function of planned activities, criticality, and resource
allocation, it does not fully reflect the completeness and

Vol 3, No 1, Paper 01003, pp. 1-11 (2025)

execution quality of the audit itself. Total effort can be high
or low depending on audit scope and criticality, but it does
not indicate whether al planned stages and layers of the
audit were actually covered. This is particularly important
in the context of complex energy sector software audits,
where skipping certain activities or reducing audit depth
may lead to incomplete or unreliable audit outcomes. To
address this, it is essential to introduce a complementary
metric that captures the coverage of the audit process, that
is, the extent to which planned audit activities were actually
performed. This led to the development of Eq. (2) is Audit
Coverage Score, which quantifies the proportion of
completed checks relative to the total planned checks
across all audit layers and stages. Eq. (2) was constructed
based on the logical structure of the audit methodology.
Each audit consists of a predefined number of stages and
layers (as defined in the audit model). For each
combination of stage and layer, there is an expected audit
check or activity. The model assumes that for every
planned check, auditors can record whether it was fully
completed (1), partially completed (optional, e.g. 0.5), or
not performed (0). By summing all completed checks and
dividing by the total number of planned checks, the Audit
Coverage Score expresses the audit completeness as a ratio
ranging from 0 to 1 (or 0% to 100%). This metric is
particularly valuable for analysing audit quality across
projects. For example, a low coverage score may indicate
audit scope reduction due to time or resource constraints,
while a high score reflects full execution of the planned
audit methodology. Thus, Eq. (2) complements Eq. (1) by
shifting focus from total effort to audit thoroughness,
offering auditors and organizations an important additional
indicator for assessing the reliability and integrity of audit
results:
226,
4 = @)
nxm

where 4. is audit coverage score (0 to 1 or 0% to 100%),
Ci, is conducted check (1 if completed, O if not) for stage i
and layer j, »n is number of audit stages, m is number of
audit layers.

While Eq. (2) is Audit Coverage Score reflects how
thoroughly the audit process has been executed, it does not
provide any insight into the results or findings of the audit.
An audit may achieve high coverage, meaning that all
planned checks were conducted, but the audit findings
themselves could still vary significantly from minimal
issues to multiple critical nonconformities. In the context
of auditing software engineering practices, particularly in
critical domains such as the energy sector, understanding
and quantifying the number and severity of issues detected
is essential for evaluating both the current state of
processes and the effectiveness of the audit itself. This is
where the concept of a Nonconformity Rate, Eq. (3),
becomes important. Eq. (3) was developed to quantify the
proportion of detected nonconformities relative to the total
number of checks performed during the audit. This
approach is grounded in audit practice, where each check
performed, as defined in Eq. (2), results in either a
conforming outcome (no issue) or a nonconforming

SISIOT Journal | journals.chnu.edu.ua/sisiot

outcome (finding). By dividing the total number of
nonconformities by the number of conducted checks, the
Nonconformity Rate provides a normalized value that can
be used for comparisons across audits of different scopes
and sizes. This metric is particularly valuable for several
reasons. First, it allows organizations to benchmark audit
results over time or across projects, identifying patterns or
trends in process performance. Second, it highlights areas
of concern: a higher nonconformity rate may indicate
process weaknesses or gaps in implementation, while a
lower rate suggests better process adherence and software
quality. Finally, in combination with the Audit Coverage
Score Eq. (2), the Nonconformity Rate offers a balanced
view of audit effectiveness is linking audit execution with
audit outcomes. Thus, Eq. (3) complements Eq. (2) by
moving from the evaluation of audit process completeness
to the assessment of audit findings, creating a more holistic
and actionable model for software audit analysis:

Ne=—-, 3)

where N is nonconformity rate, Nr is number of
nonconformities found, T¢ is total number of checks
conducted.

While Eq. (3) is the Nonconformity Rate provides
valuable insights into the quantity of issues found during
the audit, it does not offer detailed information about the
quality and maturity of processes in each audit layer. In
practice, not all nonconformities are of equal significance.
Some may represent minor process deviations, while
others indicate serious gaps in safety, security, or product
quality management. Therefore, a more nuanced approach
is required to assess not only the number of issues, but also
the overall maturity and robustness of audited processes.
To address this need, Eq. (4) is a Process Maturity Score
has been developed. This formula introduces a way to
quantify the maturity level of processes within each audit
layer (Process, Product, Safety and Security). By
evaluating individual process elements and assigning them
scores based on their implementation status, auditors can
calculate an average score that reflects how well-developed
and stable the processes are:

p
3s,
M, =, 4)
p

where M is process maturity score for a particular audit
layer (scale from 0 to 1 or 0% to 100%), Sk is score for each
process element (e.g., 1 for fully implemented, 0.5 for
partially implemented, 0 for not implemented), p is total
number of process elements assessed in that layer.

This metric allows auditors to distinguish between
layers with mature, well-established processes and those
with significant room for improvement. For example, in
audits of critical energy software, the Safety and Security
Audit Layer is expected to achieve a high Process Maturity
Score due to strict regulatory requirements (IEC 61508,
IEC 62443). Conversely, in non-critical applications, lower
scores might be acceptable for certain layers. By
introducing Eq. (4), the audit methodology gains the ability

Vol 3, No 1, Paper 01003, pp. 1-11 (2025)

to not only quantify effort Eq. (1), completeness Eq. (2),
and issues Eq. (3), but also evaluate process strength and
maturity, offering a comprehensive and balanced view of
software engineering practices. As a result, Eq. (4)
complements the existing model by closing the loop from
effort and execution to outcome and process quality, and
strengthens the methodological basis for systematic audit
assessments and improvement planning.

B. Integration with quality management systems. The
proposed mathematical model, consisting of audit effort
estimation, coverage evaluation, nonconformity analysis,
and process maturity assessment, offers a structured and
quantifiable approach to software audits. However, for
such a methodology to deliver lasting value, it must be
integrated seamlessly into the organization's existing
Quality Management System (QMS). Embedding the audit
methodology within the QMS ensures that audit activities
are aligned with organizational processes, contribute
directly to continuous improvement, and support
compliance with both internal policies and external
regulatory requirements. Furthermore, integration
facilitates audit repeatability, comparability across
projects, and linkage to certification and regulatory
inspections. The following section outlines how this
methodology can be effectively integrated into QMS
frameworks, with particular attention to the needs of the
energy sector.

Effective software audits should not function as
isolated or ad hoc activities. Instead, they should be
embedded within the organization's broader Quality
Management System (QMS) to ensure sustainability,
traceability, and impact. The proposed audit methodology
is designed to align naturally with the principles and
processes defined in widely adopted QMS standards, such
as ISO 9001, while also addressing specific regulatory
requirements relevant to the energy sector [2].

Alignment with QMS Processes. The methodology’s
audit process stages (planning, assessment, reporting, and
follow-up) map directly to the Plan-Do-Check-Act
(PDCA) cycle that underpins most QMS frameworks.
Audit planning supports the "Plan" phase by defining
objectives and preparing criteria. Execution and
assessment correspond to the "Do" and "Check" phases,
where activities are performed and results evaluated.
Finally, reporting and follow-up align with the "Act"
phase, driving corrective actions and continuous
improvement. By integrating audit activities into this cycle,
organizations ensure that audit results are not only recorded
but also used as drivers for process optimization and risk
mitigation.

Support for Documentation and Records. The
mathematical models proposed Eq. (1) to Eq. (4) produce
quantitative results that can be systematically documented
and stored in QMS records. Audit effort estimations,
coverage ratios, nonconformity rates, and maturity scores
provide objective evidence for management reviews,
regulatory inspections, and certification audits. This data-

driven approach enhances the transparency and
accountability of software engineering audits.
Alignment with Energy Sector Regulatory

Requirements. In the energy sector, regulatory bodies and

SISIOT Journal | journals.chnu.edu.ua/sisiot

industry standards demand rigorous control and
documentation of software development processes,
particularly for safety- and security-critical systems.
Standards such as IEC 61508 and IEC 62443 require

demonstrable evidence of process execution, risk
management, verification and validation, and issue
resolution.

The proposed audit methodology directly supports

compliance with these requirements. The Process Audit
Layer ensures that safety and security processes are defined
and followed. The Product Audit Layer verifies that
resulting software products meet quality and reliability
expectations. The Safety and Security Audit Layer focuses
specifically on domain-specific risks and controls.
Moreover, audit results are expressed in coverage,
nonconformity, and maturity metrics can be mapped to
regulatory reporting formats, making audits both practical
and compliant. By integrating the audit methodology into
the QMS, energy sector organizations can ensure that
audits become a central element of their governance and
assurance frameworks. This integration enhances readiness
for regulatory inspections, strengthens internal controls,
and fosters a culture of quality, reliability, and continuous
improvement throughout the software lifecycle.
C. Software-Based Implementation of the Audit
Methodology. To facilitate the practical adoption of the
proposed audit methodology, a dedicated software system
named SoftAssure was developed [22]. This platform
serves as an interactive tool that supports audit planning,
requirement analysis, validation tracking, and
documentation within a unified digital environment. The
system is implemented as a modular web application,
allowing audit teams to manage multiple projects, enter
findings, and evaluate compliance levels across software
engineering processes. SoftAssure enables seamless
integration of the mathematical models described in the
methodology. For example, audit effort estimations and
coverage metrics can be computed directly based on the
data entered by users, while maturity assessments are
derived from structured input regarding organizational
processes. By combining data entry with automatic
evaluation and visual feedback, the system empowers
auditors to maintain consistency and transparency in
assessment procedures.

The platform also supports linkage to broader Quality
Management System (QMS) components. It provides
interfaces for connecting audit items to risk entries,
training records, and incident management logs, enabling
traceability and process alignment. Furthermore, the
system’s structure allows organizations to embed audit
checklists and findings into regular QMS documentation
cycles, supporting evidence-based reporting and
continuous improvement. Overall, SoftAssure not only
demonstrates the feasibility of implementing the proposed
methodology in practice, but also acts as a foundation for
future research and extensions. Its modular design allows
for domain-specific customizations, such as audit schemes
for the energy or critical infrastructure sectors. The system
was used to validate the audit process within educational
and research environments and is freely available for
demonstration and academic use [22].

Vol 3, No 1, Paper 01003, pp. 1-11 (2025)

V. CONCLUSION

The conducted research resulted in the development of
a structured and domain-oriented methodological approach
to auditing software engineering practices in the energy
sector. The proposed methodology integrates general
software lifecycle models with energy-specific regulatory
requirements, offering a comprehensive framework for
assessing process quality, product reliability, functional
safety, and cybersecurity.

As a result of this research, a structured methodology
has been developed and formalized, contributing to the
advancement of knowledge in the field of software auditing
for the energy sector. This methodology is grounded in
three essential components, which together form an
integrated and scientifically substantiated framework:

1. A multi-layered audit model, which defines
Process, Product, and Safety and Security layers. This
model ensures comprehensive evaluation and traceability
of audit activities across the entire software lifecycle,
addressing both general and domain-specific requirements;

2. A structured audit process model, which
establishes Planning, Assessment, Reporting, and Follow-
up stages. This process structure is aligned with recognized
quality management principles, enabling integration into
organizational QMS frameworks and supporting process
improvement and compliance activities;

3. A mathematical formalization of the audit
methodology, expressed through a set of quantitative
models (Eq. 1-Eq.4). These models enable precise
estimation of audit effort, measurement of coverage,
analysis of audit findings, and evaluation of process
maturity. Their introduction enhances the objectivity,
comparability, and analytical rigor of software audits in
industrial contexts.

Together, these methodological results represent a
significant contribution to the field of software quality
assurance and audit practices. They bridge the gap between
general software engineering standards and the specific
demands of the energy sector, providing auditors and
organizations with a robust toolset for ensuring the
reliability, safety, and security of software systems in
critical infrastructure environments. Through detailed
analysis of international standards the methodology
ensures alignment with regulatory and best practice
requirements relevant to critical energy software systems.
The approach facilitates identification of weaknesses not
only at the product level, but also within organizational
processes, risk management procedures, and
safety/security assurance activities.

The proposed mathematical models enhance audit
objectivity and comparability, allowing auditors to present
findings in a quantitative and structured manner. By
applying these models, organizations can track audit
completeness, identify recurring process weaknesses, and
prioritize improvement actions based on nonconformity
and maturity indicators.

The results of this research contribute to the scientific
and practical advancement of software auditing
methodologies, particularly for application in complex and
highly regulated environments such as the energy industry.
The developed framework supports not only internal

SISIOT Journal | journals.chnu.edu.ua/sisiot

quality assurance efforts but also regulatory compliance,
certification readiness, and continuous improvement
initiatives.

Future work will focus on the practical validation of the
methodology through industrial case studies and further
refinement of the mathematical models, particularly in
terms of weighting factors and criticality scaling, to
enhance precision and applicability across diverse energy
sector contexts.

AUTHOR CONTRIBUTIONS
Z.L. — conceptualization, investigation, writing-
original draft preparation; I.L. — investigation, resources,
writing-original draft preparation, supervision writing-
review and editing.

COMPETING INTERESTS
The authors declare that they have no conflict of
interest.

REFERENCES

[1] B. Zhu, A. Joseph, and S. Sastry, “A taxonomy of cyber
attacks on SCADA systems,” in Proc. Int. Conf. Internet
Things, Cyber, Physical and Social Computing, Dalian,
China, 2011, pp. 380-388.

[2] ISO9001:2015. Quality management systems -
Requirements. Geneva, Switzerland: International
Organization for Standardization, 2015.

[3] International Organization for Standardization and
International Electrotechnical Commission, ISO/IEC
12207: Systems and software engineering — Software life
cycle processes. Geneva, Switzerland: ISO/IEC, 2008.

[4] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr,
“Basic concepts and taxonomy of dependable and secure
computing,” I[EEE Trans. Dependable Secure Comput.,
vol. 1, no. 1, pp. 11-33, Jan.—Mar. 2004.

[5] C.N. Amoo, B. Eckman, and J. R. New, “A multicriteria
framework for assessing energy audit software for low-
income households in the United States,” Energy
Efficiency, vol. 18, no. 1, p. 12, 2025.

[6] R. Abbas, et al., “Adopting Secure Software Development
Practices to Improve Financial Transactions in the
Banking Sector,” unpublished.

[71 R.K.lJena, “Factors influencing blockchain adoption in
accounting and auditing in the face of Industry 4.0: a
multi-criteria decision-making approach,” J. Accounting &
Organizational Change, 2025.

[8] M. A. Tucker, The Impacts of Software Development
Methodologies on New Model Success Rates in the US
Automotive Industry, Ph.D. dissertation, Walden Univ.,
USA, 2025.

[91 A. Diyab, et al., “Engineered Prompts in ChatGPT for

Educational Assessment in Software Engineering and

Computer Science,” Education Sciences, vol. 15, no. 2, p.

156, 2025.

V. V. Ganapathy and S. Sampath, “Regulatory and

Security Compliance for Software In Cloud Ecosystems—a

Systematic Literature Review,” unpublished.

A. Sholihin and M. Salman, “OSCAT: A Comprehensive

Tool for Automated CIS Benchmark Auditing,” Asian J.

Eng., Social and Health, vol. 4, no. 2, pp. 443-452,2025.

V. Terragni, et al., “The Future of Al-Driven Software

Engineering,” ACM Trans. Softw. Eng. Methodol., 2025.

International Organization for

Standardization/International Electrotechnical

Commission, ISO/IEC 12207:2017 Systems and software

[12]

[13]

Vol 3, No 1, Paper 01003, pp. 1-11 (2025)

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

engineering — Software life cycle processes. Geneva,
Switzerland: ISO/IEC, 2017.

International Organization for
Standardization/International Electrotechnical
Commission, ISO/IEC/IEEE 15288:2015 Systems and
software engineering — System life cycle processes.
Geneva, Switzerland: ISO/IEC, 2015.

IEEE Standards Association, /EEE Std 730-2014 - IEEE
Standard for Software Quality Assurance Plans. New
York, NY, USA: IEEE, 2014.

IEEE Standards Association, IEEE Std 1012-2016 - IEEE
Standard for System, Sofiware, and Hardware Verification
and Validation. New York, NY, USA: IEEE, 2016.
International Organization for
Standardization/International Electrotechnical
Commission, ISO/IEC 25010:2011 Systems and software
engineering — Systems and sofiware Quality
Requirements and Evaluation (SQuaRE) — System and
software quality models. Geneva, Switzerland: ISO/IEC,
2011.

International Electrotechnical Commission, /EC
61508:2010 Functional safety of
electrical/electronic/programmable electronic safety-
related systems. Geneva, Switzerland: IEC, 2010.
International Electrotechnical Commission, /EC 62443
(multiple parts): Security for industrial automation and
control systems. Geneva, Switzerland: IEC, 2013-2021.
International Organization for
Standardization/International Electrotechnical
Commission, ISO/IEC 33001-33099:2015 Information
technology — Process assessment. Geneva, Switzerland:
ISO/IEC, 2015.

CMMI Institute, CMMI for Development, Version 2.0.
Pittsburgh, PA, USA: CMMI Institute, 2018. [Online].
Available: https://cmmiinstitute.com/cmmi

L. Liutak, Softdssure: A Web-based Tool for Software
Audit Management, 2025. [Online]. Available:
https://github.com/iliutak/softassure

lhor Liutak

Doctor of Technical Sciences, Professor
at the Department of Software
Engineering, Ivano-Frankivsk National
Technical University of Oil and Gas.
Specializes in component-based
software engineering, auditing software
processes in the energy sector, and data
visualization. Research interests include
approaches to software audits,
development. Author of more than 100
scientific papers.

ORCID ID: 0000-0001-8960-5871

Zinoviy Liutak

PhD in Technical Sciences, Professor at
the Department of Information and
Measurement Technologies, Ivano-
Frankivsk National Technical
University of Oil and Gas. Specializes in
standardization, verification and
validation of software engineering
processes, non-destructive systems of
quality assurance, and software quality
management. Author of more than 100
scientific papers.

ORCID ID: 0009-0000-8323-6980

SISIOT Journal | journals.chnu.edu.ua/sisiot

MeTtopgonoriuHmia nigxig ayauty po3pobKku nporpamHoro
3abe3neyeHHA B eHepPreTM4HOMY CEeKTopi

* . .o
Irop liotak", 3iHoBii1 lloTak?
! Kadepnpa iHxeHepii nporpamHoro 3a6esneyeHHs, IBaHO-PPaHKiBCbKMIN HaLiOHAIbHUIA TEXHIYHMIA yHiIBEPCUTET HadTH | rasy,
IBaHO-®paHKiBCbK, YKpaiHa
2 Kadeppa iHPOpMaLiiHO-BUMIPIOBAZIbHUX TEXHOAOTIH, |BaHO-PPaHKIBCbKMUI HaLOHAIbHUIA TEXHIYHMIA YHIBEPCUTET HadTH i rasy,
IBaHO-®paHKiBCbK, YKpaiHa
* ABTOp-KOpecnoHaeHT (EnekTpoHHa agpeca: ihor.liutak@nung.edu.ua)

AHOTALLIA 3pocTatoya CKNagHICTb MPOrpamHUX CUCTEM B €HEpPreTMYHOMY CEKTOpi, 0cobamBO TuX, WO 3abesneyyoTb
ynpaBAiHHA pPO3MNOAiNIeHMMM Ta BiQHOBAIOBAHMMW [)KepeNaMn eHeprii, BMMAra€ BMPOBAAKEHHA CTPYKTYPOBAHMUX i
OPIEHTOBAHMX Ha Frany3b METOAONOFIN ayaunTy. 3abe3neyeHHsA HadiMHOCTI, 6e3neKn Ta 3axXMLLEHOCTI NPOrPAMHMUX MPOAYKTIB Y
LIbOMY KOHTEKCTi € KPUTUHHO BaXK/IMBUM Yepe3 NOCUNEHHA 3a1eXHOCTI NPOMMUCIOBOI Ta eHepreTUYHOI iHGPaCTPYKTYpK Big,
aBTOMATU30BaHMX i MPOrpamMHO-KEPOBAHUX PilleHb. Y Uil CTATTi 3aNpPONOHOBAHO KOMMJIEKCHUIM METOA0N0rYHMIA Niaxig Ao
ayauTy NPaKTUK Po3pobKM mporpamHoro 3abesneyeHHs, afanToBaHU A0 NoTpeb eHepreTMYHoro cektopa. PospobneHa
MeTo[00riA 6a3yeTbCA Ha IHTErPOBaHI Mogeni ayauTy, AKa BU3HAYa€e piBHi NpoLeciB, NpoAyKTy Ta yHKLioHanbHOT 6e3neku
i 3aXMLLEeHOCTI, WO A03BONAE 3A4IMCHIOBATM LiNICHY | CMCTEMATUYHY OLiHKY. [L04aTKOBO BOHA BK/OYAE CTPYKTYPOBAHUI NPOLLEC
ayauTy, Y3roKEHUN 3 NPUHLMNAMM CUCTEM YNPaBAiHHA AKICTIO, WO OXOMNJIOE BCi KAOYOBI eTann — Bif4 NAaHyBaHHA A0
3aBepLUa/IbHOro aHasi3y Ta pekoMeHzauin. BaxknmBot ocobamBicTio nigxoay € matemaTuyHa dopmanisalis ayauTopcbKoi
LiANbHOCTI, WO BKAKOYAE MOAENI ANA OLUiHKM 3yCUb, BUMIPIOBAHHA NOBHOTW ayamTy, aHa/i3y HEBIAMNOBIAHOCTEN Ta OLHKK
3pinocTi npouecis. Lii mogeni nigBuLLyoTb 06'€KTUBHICTb | aHaNITUYHY TOYHICTb ayAuUTY, AO3BONAKOUM OPraHi3aLiam KinbKicHO
NOpiBHIOBATM Pe3y/ibTaTU MiXK MPOEKTaMM Ta UMKAAMW ayauTiB. 3anponoHOBaHa MeToAoAorifs po3pobneHa Ha OCHOBI
rNMBOKOro aHai3y MiXHapoAHWUX CTaHaapTis, BKAouatoum ISO/IEC 12207, ISO/IEC 25010, IEC 61508, IEC 62443 Ta I1SO 9001,
i MOK/IMKAHa YCYHYTU PO3PUB MiXK 3aralbHMMKN BUMOTamM 0 MPOrpamHoi iHXKeHepii Ta ranysesumn notpebamm, Nnos'asaHnmMm
3 OYyHKUioHaNbHOO 6e3nekoto, Kibep3axmcTtom Ta eKcnayaTauiiHol HagjiMHicTio. Pe3ynbTaTv AOCNIANKEHHA CNpUAOTbL
pO3BUTKY MeToAiB ayauty y cbepi nporpamHoi iHXeHepii Ta 3abe3nevyloTb HAYKOBO OB6rPYHTOBaHWWA i NPAKTUYHO
OPIEHTOBAHWI IHCTPYMEHT ANA NiABULLEHHA AKOCTI, 6e3NeKun Ta BiANOBIAHOCTI MPOrPamMHUX CUCTEM, LLLO BUKOPUCTOBYIOTLCA B
eHepreTM4HOMY CEeKTOPI.

K/IIO4YOBI C/IOBA ayguT nporpamHoro 3abesneyeHHsi, eHepreTMYHUI CEKTop, MPOorpamHa iHKeHepis, QyHKLioHa/NbHa
6e3neka, Kibepbesneka.

@ @ This article is licensed under a Creative Commons Attribution 4.0 International License.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

11
Vol 3, No 1, Paper 01003, pp. 1-11 (2025)

