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ABSTRACT The article conducts an in-depth examination of a comprehensive methodology for the integration of metadata
into neural networks, aiming to enhance the security frameworks of state information systems. Metadata, encompassing a
wide range of contextual information such as timestamps, geolocation data, and user behavioral characteristics, plays a
pivotal role in strengthening the capacity to detect and mitigate potential cyber threats. This approach leverages the
advanced capabilities of neural networks and state-of-the-art computational technologies, facilitating the effective utilization
of metadata across critical domains, including public administration, healthcare, transportation, and cybersecurity. The
integration of such metadata is of paramount importance in sectors where the precision and speed of threat detection are
essential for averting catastrophic consequences. The proposed methodology underscores the embedding of metadata
directly into neural network architectures to enable the detailed analysis of anomalous activities within information systems.
This integration significantly enhances the precision, adaptability, and efficiency of cybersecurity measures. The classification
and categorization of metadata within neural networks provide a robust foundation for deep analytical capabilities and
facilitate rapid adaptation to emerging threats and shifting environmental conditions. Moreover, the research delves into the
development and application of innovative algorithms capable of processing and managing extensive volumes of data. These
algorithms are designed to ensure scalability, maintain robustness, and enhance the operational resilience of cybersecurity
frameworks. Furthermore, the article explores the practical implications and real-world implementation of these algorithms,
illustrating their applicability to large-scale government systems and critical infrastructures. By integrating metadata into
neural networks, the study demonstrates how these systems can achieve heightened levels of protection against cyber
threats. Through detailed case studies and practical applications, the research highlights the transformative potential of
metadata-driven neural networks in bolstering the security of critical infrastructures. The findings emphasize the necessity
of data-driven decision-making in modern cybersecurity paradigms and outline the prospective expansion of the proposed
model to address future challenges. The model’s ability to improve resilience against evolving threats and enhance real-time
response capabilities within dynamic environments is particularly noteworthy. The study concludes by showcasing the
potential of this methodology to revolutionize cybersecurity practices, offering a scalable and adaptable solution to mitigate
risks and ensure the integrity of state information systems.
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I. INTRODUCTION

nsuring the information security of state systems is
E one of the key tasks in the modern digital
environment. State infrastructures process enormous
volumes of information daily, making them particularly
vulnerable to the growing number of cyber threats. This
necessitates the development of innovative methods for
effectively detecting, analyzing, and mitigating risks. One
of the promising approaches involves utilizing metadata as
a critical informational resource that can enhance the

capabilities of traditional cybersecurity systems.
Metadata, which contains structured information about
primary data, is particularly valuable for improving
machine learning analytical models. Due to its
characteristics, metadata provides additional context for
data analysis, enabling a deeper understanding of threats
and more accurate anomaly detection in state information
systems. In this context, neural networks serve as a primary
tool for processing large volumes of information and

predicting potential threats. Modern neural network
architectures, such as deep neural networks (DNN),
recurrent neural networks (RNN), and convolutional neural
networks (CNN), are capable of effectively integrating
metadata into data processing and analysis to enhance
accuracy and response speed [1, 2].

Data analytics based on neural networks opens new
possibilities not only in the field of information security but
also in a broader context of technology applications across
all areas of human life. The capabilities of neural networks
enable accurate processing of complex multilayer data,
optimizing processes in healthcare, education, industry,
and public administration. For example, in medical studies,
metadata integrated into machine learning models allows
for the prediction of treatment outcomes and the
identification of potential health risks for patients [3]. In
industrial systems, neural networks utilizing metadata
contribute to process automation, workload analysis, and
accident prediction [4].
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Thus, the integration of metadata into modern neural
networks creates potential for fundamentally improving
methods of data analysis and processing in critical areas of
state administration. These systems’ analytical capabilities
enable timely detection of anomalies, prediction of cyber
threats, and ensuring data security, which are key aspects
of the functioning of state information systems. As a result,
this not only enhances the effectiveness of information
security measures but also creates conditions for the
sustainable development of digital infrastructures [5].

Modern research confirms the importance of using
metadata in conjunction with neural networks. For
instance, metadata can enhance the performance of binary
data analysis models, which is particularly relevant for
cybersecurity [6]. Digital metadata processing combined
with artificial intelligence facilitates managing information
flows effectively [7].

Ensuring the information security of state systems in
the modern digital environment is a priority. The
increasing volume of data processed and the complexity of
cyber threats necessitate new approaches for their effective
detection, analysis, and prediction. Metadata plays a
particularly important role in this context, providing an
additional structure for information processing and
enhancing the capabilities of machine learning-based
systems [8]. Neural networks, as a key machine learning
tool, can integrate metadata for analytical processing,
ensuring accuracy and speed in responding to anomalies in
state systems [9].

The analytical capabilities of neural networks,
particularly CNN and RNN, allow for in-depth analysis of
structured and unstructured data, enabling the detection of
complex patterns in cyberspace. Modern metadata models
significantly enhance the efficiency of large-scale data
analysis in the public sector [10]. Using hybrid models that
combine metadata and primary data enables early-stage
threat prediction, reducing risks for critical systems [11].

Metadata can optimize binary analysis algorithms,
enabling models to quickly identify anomalous records,
which is crucial for preventing targeted attacks on state
infrastructures [12]. Furthermore, metadata analytics in
healthcare and industry confirms the universality of these
approaches [13, 14].

Il. METHODS

The diagram (Fig. 1) is a flowchart illustrating the step-
by-step process of metadata selection and preprocessing for
machine learning applications. Each block represents a
critical phase in the pipeline, ensuring optimal data
preparation and its effective utilization in training neural
networks.

1. Metadata Collection

The process begins with the collection of three primary
categories of metadata:

* Behavioral metadata, capturing user actions, session
durations, and request frequencies. These data points
enable the detection of activity anomalies that may indicate
potential threats [1];

* Temporal metadata, including timestamps of activities
and intervals between user actions, provides dynamic insights
into activity patterns, aiding in anomaly detection [2];

Vol 3, No 1, Paper 01001, pp. 1-7 (2025)

Process of Metadata Selection and Preprocessing for Machine Learning
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FIG. 1. Detailed Description of the Diagram.

e Geolocation metadata, such as IP addresses and
geographic access locations, identifies geographic
anomalies, helping to detect unauthorized access
attempts [3].

2. Metadata Classification

In this stage, metadata is categorized based on its type
(behavioral, temporal, or geolocation). This classification
is essential for segmenting and preparing data for specific
analytical tasks, as discussed in [4].

3. Data Segmentation

This step includes preprocessing tasks aimed at
optimizing metadata for machine learning models:

* Normalization of numerical data ensures consistent
scaling, preventing specific features from
disproportionately influencing model training [5];

* Encoding categorical data, such as geolocation
regions, via one-hot encoding, ensures that models can
process such data efficiently [6];

* Vectorization of temporal and textual metadata
transforms complex inputs into feature representations
suitable for neural networks [2].

4. Integration into Machine Learning Model

The preprocessed metadata is integrated into the
machine learning model. Neural networks, particularly
deep learning architectures like CNN and RNN, are
adapted to process this data, leveraging its additional
context to improve accuracy and anomaly detection [7].

5. Efficient Model for Data Analysis

The result of this process is a robust machine learning
model capable of detecting anomalies, predicting potential
threats, and providing actionable insights into the analyzed
system. This final stage demonstrates the efficiency of
metadata in enhancing neural network capabilities [1].

Figure 1 provides a comprehensive overview of the
systematic approach to metadata processing, ensuring the
data is well-prepared for advanced machine learning tasks,
such as cybersecurity, resource management, and anomaly
detection in state systems.

Proposed Neural Network Architecture

The proposed neural network architecture incorporates
metadata as a distinct layer, enhancing data processing
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efficiency and the accuracy of machine learning models.
Its main components include:

1. Feature Extraction Module from Primary Data

This module processes primary data, such as network
logs, using CNN. CNN effectively analyzes structured data
and identifies patterns indicative of potential threats [4];

2. Metadata Processing Module

This module employs a multilayer perceptron (MLP) to
process behavioral, temporal, and geolocation metadata. It
performs normalization, encoding, and vectorization to
ensure metadata is correctly interpreted by the network.
The MLP handles high-dimensional data and adapts it to
machine learning models [1];

3. Fusion of Modules in a Hidden Layer

At this stage, the primary data and metadata modules
are merged into a shared hidden layer. This enables the
neural network to learn with the additional context
provided by metadata. The integration allows the model
not only to analyze general patterns but also to account for
the specifics of individual data elements [6].

Metadata as an Additional Training Layer

Metadata in this architecture is treated as an additional
training layer, allowing the model to adapt to a broader
range of features without significantly increasing the
complexity of the primary module. The context provided
by metadata contributes to more precise segmentation and
analysis, which is especially important for detecting
complex patterns in state information systems (Fig. 1) [3].

Graph Neural Networks (GNNs) for Metadata
Processing

The proposed architecture also considers the use of
GNN. GNNs are optimal for processing metadata that can
be represented as graphs (e.g., linked IP addresses or
sequences of user actions). GNN enables models to
account for topological relationships between data, which
facilitates:

* Enhanced Data Interconnectivity: GNN captures
relationships between objects (e.g., between IP addresses
in network traffic) [2];

* Temporal and Spatial Correlation Analysis: This
allows for the identification of complex attacks, such as
distributed denial-of-service (DDoS) or multi-stage attacks
distributed over time [7];

* Reduced False Positives: GNN considers the
context, avoiding erroneous conclusions typical of models
with less structured data analysis [8].

Figure 1 supports these processes by illustrating the
relationship between different metadata types and their
integration into neural networks.

Experimental Methodology
Description

To validate the proposed approach, we developed an
experimental setup comprising three comparative models:

* Baseline Model: a CNN trained on raw logs without
metadata;

* Enhanced Model: a CNN+MLP hybrid using
metadata as separate input vectors;

* Proposed  GNN-based Model:  incorporating
topological metadata with temporal and behavioral
correlations.

The training dataset included 350,000 records collected

and Dataset
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from anonymized state infrastructure traffic logs over a 6-
month period. These records were labeled using expert-
guided annotation and included both normal and
anomalous events (e.g., port scanning, lateral movement,
privilege escalation attempts).

Features were categorized into:

* Primary features: protocol type, packet size, duration,
ports used;

» Metadata features: user session frequency, time-of-
day activity, location of access, cross-device session
transitions.

Models were evaluated using 5-fold cross-validation,
with metrics including accuracy, precision, recall, F1-
score, and false positive rate (FPR). ROC and PR curves
were also plotted to visualize performance gaps.

To evaluate the performance of machine learning
models with integrated metadata, we conducted a
comparative analysis across three architectures: a baseline
CNN, a hybrid CNN combined with a multilayer
perceptron (CNN+MLP), and the proposed GNN-based
model. The evaluation focused on two critical metrics —
threat detection accuracy and FPR. The results are
visualized in Figure 2.

Performance Metrics of Metadata-Based ML Models

Accuracy by Model FPR by Model
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FIG. 2. Comparative performance of three machine learning
models in terms of threat detection accuracy (left) and false
positive rate (right).

The proposed GNN-based model demonstrates a
significant improvement in accuracy and a noticeable
reduction in FPR compared to the baseline CNN and the
hybrid CNN+MLP. The use of metadata in the model
architecture contributes to enhanced anomaly detection
and more precise classification decisions.

Conclusion on Architecture

The proposed neural network architecture,
incorporating primary data and metadata modules, along
with the possibility of using GNN, enables effective
analysis of complex data in the context of information
security. This allows the model not only to detect potential
threats but also to predict their development, which is
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critical for protecting state information resources in the
modern digital environment.

The visualization in Fig. 1 demonstrates the structure of
GNN, which serves as the basis for data analysis in various
tasks, including information security. The network consists
of a target node and its connected nodes, forming a local
structure. This architecture reflects the relationships
between system elements, where each node has a specific
role and exchanges data with neighboring nodes.

Graph Neural Network Structure with Node Labels

FIG. 3. Neural Network Description.

1. Network Structure

The GNN consists of six nodes: A (Target Node), B, C,
D, E, and F, which interact with each other through edges.
The Target Node (A) serves as the central element of the
structure, aggregating information from other connected
nodes. According to the GNN concept, each node in the
graph retains local features, while edges between nodes
represent relationships between the data (Fig. 2) [1].

2. Role of the Target Node (A)

The Target Node (A) collects and summarizes
information from connected nodes (B, C, D) and uses this
data to make graph-level conclusions. This aligns with the
core idea of GNN, where information from neighboring
nodes is aggregated and transmitted to the central node for
learning or classification [2].

3. Interactions Between Nodes

* Node B is connected to the Target Node (A) and acts
as one of the primary sources of data.

*Node C plays a dual role, functioning as an
intermediary node that transmits information from nodes E
and F to the Target Node (A).

*Nodes D, E, and F are peripheral elements that
provide additional context to the data and enhance the
overall learning process of the network.

4. Aggregation and Data Transmission

In the GNN architecture, each node passes its features
to neighboring nodes through edges. This process involves
aggregation (averaging or summing data), enabling the
Target Node (A) to accumulate information about the
entire graph and make predictions based on it. For instance,
in cybersecurity tasks, this can be used to detect anomalies
or analyze behavioral patterns [3].
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5. Graph Features

* The graph is constructed as undirected, meaning data
transmission between nodes is symmetric.

* Node colors indicate their roles in the network: the
Target Node is highlighted in orange, while peripheral
nodes have unique colors for better visual distinction
(Fig. 2).

6. Applications of the Neural Network

Such a structure of a Graph Neural Network can be
applied to:

* Detecting anomalies in state information systems;

* Predicting threats based on the connected features of
nodes;

* Integrating metadata into machine learning models
for analytical analysis of complex data structures [4].

Thus, the presented visualization (Fig. 2) demonstrates
the basic architecture of a Graph Neural Network with a
Target Node and connected elements. It visually represents
the concept of data exchange between nodes to build an
efficient machine learning model.

MLP Architecture

The presented diagram illustrates the architecture of a
MLP with the integration of metadata as a critical source
of information for neural network training:

* Layer-0 (Input Layer) contains various types of
metadata, providing additional context for the model;

* Layer-1 (Intermediate Layer) aggregates and
summarizes the input data to prepare it for further
processing;

* Layer-2 (Output Layer) generates the final result,
which can be used for classification or prediction.

The diagram reflects the key principles of machine
learning, where each layer performs a specific function in
the process of data processing and transmission (Fig. 2).

Perceptron Architecture with Metadata for Training

FIG. 4. Description of the Scheme.

1. Layer-0: Input Layer (Fig. 3).

Function: This layer serves as the primary source of
input information for the neural network. It includes nodes
representing metadata as features:

e X, and X; : Temporal metadata containing
timestamps or activity intervals;

o X Geolocation metadata describing user
locations or IP addresses;

e X, X, and X : Behavioral metadata, which may
include user actions, request frequencies, and
other characteristics;
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Feature: The input layer is the most detailed level,
providing raw data that requires further processing and
aggregation. Each node transmits information to the next
layer through weighted connections in the neural
network [6].

2. Layer-1: Intermediate Layer (Fig. 3).

Function: This layer aggregates features from the input
layer to create a generalized representation of the data. The
intermediate layer consists of two nodes:

e ( : Aggregates information from nodes Xy, Xc,
and X,, corresponding to temporal and
geolocation data;

e D : Processes data from nodes Xg, Xy, and Xp,
which contain behavioral metadata.

Feature: Nodes C and D convert input features into a
more compact form, reducing data dimensionality while
retaining information. This corresponds to the hidden layer
stage in classical perceptron models [8].

3. Layer-2: Output Layer.

Function: Node A is the final element of the neural
network that receives aggregated information from the
intermediate layer (C and D). It performs the final data
processing and generates the output, which can be used for
classification or prediction.

Feature: Node A combines aggregated features from the
intermediate layer, forming the final model for training.
This allows the inclusion of all available metadata,
improving the accuracy and efficiency of predictions [5].

4. Connections Between Layers (Fig. 3).

Connections between Layer-0 and Layer-1: Directed
connections transmit input features to the intermediate
layer, where they are aggregated. Each connection
corresponds to a weight coefficient optimized during
training.

Connections between Layer-1 and Layer-2: Nodes C
and D transmit aggregated data to the output node A for
final analysis.

5. Architecture Interpretation

Model Construction: The scheme illustrates the operation
of a MLP, where input features from different categories of
metadata are aggregated at the intermediate level.

Role of Metadata: The input layer provides the model
with structured features, offering additional context for
machine learning. For instance, temporal and behavioral
data help detect anomalies in state information systems [4].

Aggregation and  Generalization:  Using the
intermediate layer reduces data dimensionality and passes
it in a compact and informative form for final model
training.

Thus, the presented architecture ensures the effective
use of metadata for training a neural network, enabling the
model to improve the accuracy of analysis and prediction
in information security and other critically important
domains.

Mathematical Calculations for Model Evaluation. Data
for Calculations:

e True Positives (TP): 85 - correctly identified
threats;

e False Positives (FP): 10 - incorrectly identified
threats;

e False Negatives (FN): 15 - missed threats;
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e Total Predictions (Total): 110.

1. Threat Detection Accuracy.

Accuracy is calculated as the ratio of correctly
identified threats (T P) to the total number of threats ( TP +
FP+FN):

TP

Accuracy = TP+ FP + FN (1)

Substituting the numerical values:
—85 _ & 0.7727
85+10+15 110

Converting to percentage:
Accuracy = 77.27%

2. False Positive Rate (FPR).

The false positive rate is calculated as the ratio of
incorrectly identified threats (FP) to the sum of correctly
identified threats (TP) and incorrectly identified threats
(FP) :

Accuracy =

FPR = Fp 2)
" TP+ FP
Substituting the numerical values:
FPR = 0 _10 0.1053
~85+10 95

Converting to percentage:
FPR = 10.53%

3. Computational Efficiency.

Computational efficiency is evaluated as a conditional
metric considering the speed of computations and resource
optimization. Assuming a hypothetical value for the
model:

Computation Efficiency = 92.5%.

11l. DISCUSSION

The study results confirmed that integrating metadata
into machine learning models increased threat detection
accuracy by 18% compared to models based solely on
primary data. This improvement is achieved through
multilayer analytics that takes into account contextual
information, such as timestamps, behavioral patterns, and
geolocation data. Additionally, metadata integration
significantly reduced the false positive rate by 12%,
achieved through more precise segmentation and
classification of data, enabling the avoidance of typical
errors in anomaly assessment. As a result, the reliability of
cybersecurity systems, which is critically important for
state information systems, has been improved.

The proposed methodology also demonstrated high
efficiency when working with large datasets. Metadata
integration ensures flexibility in machine learning models,
allowing them to scale effectively. This proves the
methodology’s  suitability  for large-scale  state
infrastructures, where processing vast amounts of data is a
key challenge.

Overall, the study results confirm that integrating
metadata into machine learning models for ensuring state
information systems’ security is a promising approach. It
improves threat detection accuracy, reduces false positives,
and ensures scalability for large datasets, making it an
optimal solution for protecting critical state infrastructures
in the face of modern cyber threats.
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Limitations and Real-World Challenges
Despite the improvements shown, the proposed

methodology has certain limitations in practical
deployment:
* Scalability under high throughput: Real-time

metadata processing may introduce latency without
hardware acceleration or edge inference optimization;

* Metadata Quality Dependency: Model performance is
highly sensitive to the richness and consistency of
metadata. In environments with partial or noisy metadata,
accuracy drops;

* Privacy Concerns: Collecting fine-grained behavioral
or geolocation metadata may conflict with user privacy
regulations (e.g., GDPR), requiring robust anonymization
techniques;

* Adaptability across sectors: While results are
promising in government infrastructure, domain-specific
retraining may be needed for industrial or healthcare
systems.

IV. CONCLUSION

Based on the research conducted, it can be concluded
that using metadata in machine learning systems is a
promising and effective approach to enhancing the
information security of state information systems.
Metadata, such as timestamps, geolocation data, and
behavioral characteristics, provide additional context for
analysis, enabling more accurate threat identification and
attack prediction. With modern neural network
architectures, including DNN, CNN, and RNN, it is
possible to effectively integrate metadata into the data
processing and analysis process. This enhances model
accuracy, reduces false positive rates, and ensures the
flexibility of the methodology’s application to large
volumes of data.

The proposed approach to metadata integration
includes its structured classification, segmentation, and
preprocessing. Special attention is given to normalizing
numerical data, encoding categorical features, and
vectorizing textual and temporal which improves the
quality of analysis and enhances the performance of
machine learning models.

Integrating metadata into neural network models
enables the detection of complex patterns in data,
adaptation to dynamic changes in the cyber environment,
and timely responses to threats.

Experimental results confirmed the effectiveness of the
proposed methodology. In particular, threat detection
accuracy increased by 18%, while the false positive rate
decreased by 12%, indicating a significant improvement in
the reliability and efficiency of cybersecurity systems.
Furthermore, the proposed methodology demonstrates
high scalability, ensuring its suitability for use in large state
infrastructures where significant amounts of information
are processed.

Thus, the research results highlight the potential of
integrating metadata into machine learning models to
ensure information security. The proposed approach
improves data analysis methods, optimizes threat detection
processes, and enhances the resilience of state information
systems to modern cyber threats. Future research in this area
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may focus on developing more advanced models that consider
the specifics of particular infrastructures and threats.

Furthermore, future work should focus on comparative
benchmarking with recent state-of-the-art methods.
Among the most relevant are:

* Hybrid deep-learning methods with attention-based
metadata fusion,;

» Temporal Graph Networks for intrusion detection in
real-time systems;

* Federated learning models with secure metadata
sharing frameworks.

Including such comparisons will help situate the
proposed methodology more precisely within the
international research landscape and support further
generalization across multiple domains.

ACKNOWLEDGMENT
The authors express their sincere gratitude to the
University of Customs and Finance for their support and
assistance in conducting this research.

AUTHOR CONTRIBUTIONS
D.P-T., V.Z, I1K. Y.K. - -conceptualization,
methodology, investigation, writing (original draft
preparation), writing (review and editing).

COMPETING INTERESTS
The authors have no competing interests.

REFERENCES

[1]  O. M. Volokhin, Cataloging Digital Internet Resources:
Dublin Core Metadata. Kyiv: Naukova Dumka, 2017.

[2]1 V.1 Guzhov, Standards and Specifications for Developing
Electronic Educational Resources, Part 1: Metadata and
Packaging Systems. Kharkiv: Tekhnosfera, 2015.

[31 NGTU, Metadata and Packaging Systems. Dnipro: Promin,
20009.

[4] D. Marco and M. Jennings, Universal Metadata Models.
Wiley Publishing, 2004.

[5] R.Riley, J. Tierney, and L. Stewart, Meta-analysis of’
Individual Participant Data: A Practical Guide for Medical
Research. Wiley, 2021.

[6] M. Amerika, Metadata: Digital Poetics. Leonardo Books,
2007.

[71 M. Barkl, Composition: Pure Data as a Meta-
compositional Tool. Lambert Academic Publishing, 2009.

[8] D. Bohning, S. Rattanasiri, and R. Kuhnert, Meta-analysis
of Binary Data Using Profile Likelihood. Chapman and
Hall/CRC, 2008.

[91 M. S. Brown, Data Mining for Beginners. Wiley, 2014.

[10] D. Marco, Building and Managing the Metadata

Repository: A Full Life-cycle Guide. Wiley, 2000.

S. Simske, Meta-Analytics: Consensus Approaches and

Systematic Frameworks for Data Analysis. Elsevier, 2019.

G. Rafferty, Time Series Forecasting with Prophet: Build,

Improve, and Optimize Forecasting Models. Packt

Publishing, 2023.

R. G. Hahn, Homeopathy: Meta-analysis of Combined

Clinical Data. Karger, 2013.

C. Tirker, H. Balsters, B. de Brock, and S. Conrad,

Evolution of Database Schemas and Meta-modelling: 9th

International Conference FoOMLaDO/DEMM. Springer-

Verlag Berlin Heidelberg, 2001. [Online]. Available:

https://1drv.ms/f/s! AnK5LqAxhfMGhsdATAFVa_Cdpnnl

XA. [Accessed: Dec. 16, 2024].

[11]

[12]

[13]

[14]




SISIOT Journal | journals.chnu.edu.ua/sisiot

Dmytro Prokopovych-
Tkachenko

The Head of the Department of
Cybersecurity at the University of
Customs and Finance (UCF)

His research interests: cryptography,
steganography, and mathematical
modeling of cyber threats. He specializes
in the development of secure information
systems and advanced programming
paradigms for protected technical
systems.

ORCID ID: 0000-0002-6590-3898

Volodymyr Zverev

Holds a Ph.D. in Technical Sciences and
is an Associate Professor at the
Department of Software Engineering and
engineering, cybersecurity, and the
development of secure systems for
critical infrastructure.

lhor Kozachenko

Holds the position of Head of the Department at
the State Cyber Protection Centre of the State
Service of Special Communications and
Information Protection of Ukraine and is a
Senior Lecturer at the Department of Software
Engineering and Cyber Security at the State
University of Trade and Economics. His
research interests: cybersecurity, cyber defense,
information security, cryptography, operating
systems security, application software security,
electronic communications, and the regulatory
and legal support of information protection.

ORCID ID: 0000-0002-0774-7284

Yulia Khavikova

Postgraduate student at the Department of
Software Engineering and Cybersecurity at
the State University of Trade and Economics.
Her research interests focus on information
security, machine learning applications in
cybersecurity, digital risk analysis, and

secure software development.

ORCID ID: 0000-0002-0907-0705 ORCID ID: 0000-0003-1017-3602

MeToponoria BUKOPUCTAHHA MeTagaHUX Y MalULMHHOMY
HaBYaHHiI ANA NiABULLEHHA 3aXUCTY AepXKaBHUX
iHpopMmauilHUX cuctem
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3[lepxaBHa cnyxba cneujianbHOro 38’A3Ky Ta 3axucty iHdopmauii Ykpaitu, Kuis, YKkpaiHa
“Kadepnpa iHxeHepii nporpamHoro 3abe3neyeHHs Ta Kibepbesnekn [epKaBHOro TOProBesibHO-EKOHOMIYHOTO yHiBepcuTeTy, Kuis, YKpaiHa
* ABTOp-KopecnoHAeHT (EnekTpoHHa agpeca: omega2417@gmail.com)

AHOTALLIA Y cTaTTi 34jICHEHO I'PYHTOBHMI aHa/li3 KOMMIEKCHOI MEeTOA0OriI iHTerpaLii MeTafiaHnX Yy HEMPOHHI MepeKi 3 MeToro
NigBULLEHHA PiBHA 6e3neKn AeprKaBHMX iHPopMaUinHMX cucTem. MeTagaHi, Lo OXOM/OKTb LWMPOKUIM CMEKTP KOHTEKCTHOI
iHpopMmaLii (30Kpema YacoBi NO3HAYKK, re0OKaLLiMHI AaHi Ta XapaKTEPUCTUKM NOBEAIHKM KOPUCTYBaYiB), Bi4irpatoTb KIHOUOBY pPO/b
y NOCUIEHHI 34aTHOCTI BUAB/IATM M 3anobiraTv NOTEHLUiMHMM Kibep3arpo3am. 3anpornoHoBaHWi Niaxia 6a3yeTbca Ha PO3LLUMPEHNX
MOMK/IMBOCTAX HEMPOHHUX MEPEXK i HaMCyHaCHIMX 0BUYMCNIOBANbHUX TEXHOAOTIAX, WO 3abe3nedye epeKTUBHE BUKOPUCTAHHA
METaAaHUX Y KPUTUYHO BaXKAMBMX rany3nax, 30Kpema B nybaiyHOMY ynpaBAaiHHI, OXOPOHi 340p0B’A, TpaHCNopTi Ta KibepbesneLli.
IHTEerpayia meTagaHux 0cobAMBO aKTyaslbHa ANA TUX CEKTOPIB, A€ TOUHICTb i WBMAKICTb BUABIEHHA 3arpO3 MaloTb BU3HAYasibHe
3HaYeHHA 419 3anobiraHHA KaTacTpodiyHMM Hac/iaKkam. Y mMeKax 3anponoHOBaHOI METOAO/Ori HaroNoWeHO Ha BOYAOBYBaHHI
MeTaZaHux besnocepesHbO B apXiTEKTYPY HEMPOHHUX MEPEXK, L0 A€ 3MOry AeTaslbHO aHasi3yBaTM aHOMAabHI Aji BcepeauHi
iHbopMaLiiHNX cucTeM. Taka iHTerpavia iCTOTHO MiABWMLLYE TOYHICTb, aAaNTUBHICTb i pPe3y/IbTaTUBHICTb 3aX0AiB i3 Kibepbe3neku.
Knacuoikauia Ta KaTeropusauia MeTagaHux Y HEMPOHHUX Mepekax GOpPMYHOTb MillHe MiArpyHTA 418 rMBOKOro aHaniTMYHoOro
OnpaLoBaHHA AaHMX Ta CNPUAIOTb LWBMAKIM aganTaLii 40 HOBKX 3arpo3 i 3SMiHHMX YMOB HaBKOMLLHBOTO cepeaoBuLa. Kpim Toro, y
DOCNIAYKEeHHI AOKNAAHO PO3rNAHYTO PO3POBAEHHS Ta 3aCTOCYBAHHA IHHOBALIMHWUX aNropuUTMIB, 34aTHUX 06POBAATU Ta YNPaBAATU
BE/IMKUMN MAcMBaMM gaHux. Lii anroputmMum CTBOPEHO 3 ypaxyBaHHAM BMMOT 40 MAcLITaboBaHOCTI, 36epexeHHA HaAiMHOCTI Ta
NigBULLEHHA OMNepawjiiHOI CTIMKOCTI cucTem Kibepbesnekn. TakoXK Yy CTaTTi BUCBIT/IEHO MPaKTUYHI acneKkTu peanisauii Takux
a/IrOPUTMIB | NPOAEMOHCTPOBAHO iXHI0 eDEKTUBHICTb Y MACLITAOHUX AePKaBHUX CUCTEMAX Ta KPUTUUHMX IHDPACTPYKTYpax. 3aBaaKu
iHTerpaw,ii MeTagaHux y HEMPOHHI MepesKi AOC/NiAKEHHSA LEMOHCTPYE, K TaKi CUCTEMM MOXKYTb A0CATaTU BMLLLOTO PiBHSA 3aXMUCTY Big,
Kibep3arpos. Y mexax AeTanbHUX AOCNIAHULBKMX NPUKNALIB | NPAaKTUYHUX KEMCIB NiGKPECTIOETLCA NepPeTBOPIOBAIbHMI NOTEHLiaN
HEMPOHHUX MEPEN, L0 KepyrTbCA METaZaHUMK, Y 3MiLUHEHHI 6e3neKkn KpUTUMUHMX iHOPACTPYKTyp. Pesynbtat poboTu
Haro/IOWYOTb Ha HEBIA'EMHIA poni NPUUHATTA pilleHb HAa OCHOBI AA@HMX Y Cyd4acHMX Napagurmax Kibepbesneku, a TaKoXK
OKPEC/IOI0Tb NEPCMNEKTUBM PO3LIMPEHHS 3aMpPONOHOBAHOI MOAENi 3agaa NpoTUAii ManbyTHIM BUKAMKam. 34aTHiCTb mogeni
NigBULLYBATK CTIMKICTb 4O AMHAMIYHMX 3arpo3 i ONTUMI3yBaTW pearyBaHHA B peasibHOMY Yaci y MiHAMBUX YMOBax € 0CO6/MBO
NPUMMITHOI. HacamKiHeup Yy CTaTTi NPOAEMOHCTPOBAHO rOTEHLia/l MPOMNOHOBaAHOI MeToZo/or Yy TpaHchopmaLlii MPaKTUK
Kibepbesneku, Wo NPonoHye MacLUTaboBaHi 1 aAanTUBHI PILLEHHA 4R 3HUMKEHHA PUSUKIB | rapaHTyBaHHA LiNICHOCTI AepiKaBHUX
iHpopMaLLiiHKX cucTem.

K/1TIO4YOBI CJIOBA meTagaHi, MalWMHHE HaBYaHHA, HEMPOHHI Mepexi, KibepbesneKa, AepkaBHi iHbopMaL,ilHi cuctemm.

@ @ This article is licensed under a Creative Commons Attribution 4.0 International License.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

7

Vol 3, No 1, Paper 01001, pp. 1-7 (2025)



