

p-ISSN 2786-8443, e-ISSN 2786-8451, 02011(6) |Yuriy Fedkovych Chernivtsi National University|www.chnu.edu.ua

2024 Vol 2, No 2

https://doi.org/10.31861/sisiot2024.2.02011

Received 18 December 2024; revised 25 December 2024; accepted 28 December 2024; published 30 December 2024

SPI-FSMC Expander with DMA Mode Support
Andrii Yarmilko*

Department of Automated Systems Software, Bohdan Khmelnytsky National University of Cherkasy, Cherkasy, Ukraine

*Corresponding author (E-mail: a-ja@vu.cdu.edu.ua)

ABSTRACT The article provides further development of software and hardware solutions for building fully functional
Industrial Internet of Things (IIoT) systems based on high-speed SPI. The possibility of overcoming the obstacles caused by
the limitation of the set of input/output lines to a more complete use of the redundant computing resource of Wi-Fi modules
outside the provision of "access point – station" information exchange for solving problems related to other aspects of the
functioning of the embedded system has been investigated. It has been established that the current issue is to expand the
basic capabilities of embedded system components, taking into account the provision of comprehensive access to the SPI bus
for all the functionality of typical IIoT systems. The implementation of the proposed hardware and software solutions was
carried out in the form of an expander module for the basic capabilities of the SPI bus, designed to intensify information
exchange over the Wi-Fi channel between the SoC controller and peripherals: IO and LCD extensions, SD cards, DRAM and
SPI-Flash file storage. The SPIExpander hardware driver and the MultySwitcher software driver for its control were developed.
In software driver developing was implement the HAL paradigm and was used RTOS methods to prevent abnormal situations
of multiple access on the bus. The advantages of introducing the high-speed SPI bus as opposed to the STM-FSMC interface
are demonstrated in the example with the implementation of their HMI components into the structure of the embedded
device. SPIExpander was used as a system proxy driver that implements the function of a network switch, with controlled by
DrvLoadBlock software driver DrvSPI2LCD hardware adapter driver connecting on the one of its serial ports for converts DMA
packets into a stream of 16-bit words. Hardware stability has been increased and the set of input lines for generating LCD
control system signals and conducting DMA block operations has been minimized. The software model of the driver for the
implementation of polycore and multithreaded information exchange is presented. Recommendations for using the SPI-FSMC
expander are provided.

KEYWORDS host controller, SPI bus, embedded system, IIoT, human-machine interface.

I. INTRODUCTION

typical solution in the development of embedded
systems is the integration of Wi-Fi modules into
their structure. They provide convenient

communication of system devices at the level of Wireless
LAN or remote access through a network router. However,
the use of modern Wi-Fi modules exclusively for
information exchange "access point – station" is not
effective, since such a task requires only 10 – 15% of its
computing power. Thus, the excess resource in the typical
operation modes of Wi-Fi modules is more than 80%. A
rational solution is to use this resource to solve problems
related to other aspects of the functioning of the embedded
system. In general, it can refer to the work with SSD
devices, human-machine interaction support and
utilitarian tasks (e.g., technological operations control of
production equipment). In practice, a greater utilization of
this Wi-Fi modules’ resource is complicated by a limited
set of input/output lines (GPIO). It is this fact that
determines the relevance of further research and
development.

We have already carried out research aimed at building
two-level embedded control systems based on Wi-Fi
modules with a limited pin resource. Achieving the set
goals is carried out on the basis of SPI bus through the
development of an external host-controller of the high-
speed SPI-bus and the synthesis of the appropriate control
software model [1].

The purpose of the research presented in this article

was the synthesis of hardware and software solutions to

obtain integrated or multi-level Industrial Internet of
Things (IIoT) systems according to the concept [2]. The

focus was on issues related to minimizing the complexity

of both hardware and software drivers, while

simultaneously maintaining the ability to perform

streaming operations in DMA mode. The research was

carried out, in particular, with an orientation towards the

use of the aforementioned resource of Wi-Fi modules to

ensure effective graphic output on the LCD display of IIoT

systems.

II. BACKGROUND OF RESEARCH
The miniaturization of computing devices and their

body combination with a set of peripherals led to the

emergence and spread of embedded systems (EmSYS),

which had a positive impact on the manufacturability,

operational efficiency, and reliability of personal, home,

and industrial devices [3]. In turn, with the increasing level

of the global computer network coverage density and

ramifications of local computer networks, EmSYS is

intensifying the transition to the IIoT. In addition to the

steady trend of decreasing the cost of electronic

components, it is also facilitated by the intensification and
hierarchical organization of management processes [4].

Today, even the embedded system of a separate machine

is two-level. Usually, the lower-level subsystem is made

on a microcontroller and works in hard real time (HRT)

mode, directly supporting the production process within

A

2
Vol 2, No 2, Paper 02011, pp. 1-6 (2024)

SISIOT Journal | journals.chnu.edu.ua/sisiot

optimal limits. The upper-level subsystem solves the tasks

of the machine-ICS operator-machine interaction, and in

fact, implements the terminal function of the human-

machine interface (HMI). At the same time, deepening the

automation of modern productions distances the operator

from the machine, thus, transforming them into IIoT

technology [2].

These transformations are closely related to the
evolution of human-computer interaction and were

manifested in the change of HMI. Given that the visual

channel of interaction is more significant, the development

of the graphical user interface (GUI) software component

is, without exaggeration, decisive [5]. Note that modern

microcontrollers, in particular STM32, have hardware

support for the Flexible Static Memory Controller (FSMC)

interface [6]. Having such a component simplifies HMI

implementation. However, connecting the LCD via a

parallel bus requires a significant amount of pin resources,

which negatively affects the ability to optimize the
economic parameters of the proposed solutions.

As a rule, during the functioning of the embedded

system, it is necessary to solve the task of group use of

hardware resources in real time. In addition to the

synchronization of application-level software processes

using RTOS semaphores and mutexes, it is necessary to

ensure the stability of the process flow at the driver level

in conditions of comprehensive access to hardware

resources. So, for the case of application as a tool of CNC

devices control, the upper level embedded systems must

implement the following functions: serve the LCD of the

process monitor, access to SD and SPI-Flash storage

devices, polling the keyboard and displaying binary states,

communication via Wi-Fi, wired Ethernet or USB. It is not

always possible or advisable to allocate a separate physical

port to implement these functions, especially when

implementing an embedded system based on a Wi-Fi

module. For this reason, it is important to expand the basic
capabilities of components, taking into account the

provision of comprehensive access to the SPI bus for all

the functionality of typical IIoT systems.

III. HARDWARE DRIVER SPIEXPANDER
In view of the above, the implementation of IIoT

systems on the Wi-Fi module platform is impossible

without the use of the SPI bus expansion hardware driver.

Its main purpose should be the switching of peripheral

devices. This development was carried out taking into

account the functional features of the ESP12F module and

the principles presented in [1].

The circuit of the SPIExpander driver is shown in

Fig. 1. It's proposed to implement it in the form of a

separate device – a motherboard with an SPI bus

connecting the main functional components. The main
elements of the SPIExpander driver and their purpose:

• DD1 decoder, which converts the binary code of the

address bus A2, A1 and A0 into a linear one. It ensures

unambiguity of peripheral device selection;

• A set of DD2 buffer elements, which serves as a switch

FIG. 1. Circuits of the SPIExpander.

3
Vol 2, No 2, Paper 02011, pp. 1-6 (2024)

SISIOT Journal | journals.chnu.edu.ua/sisiot

for SCK and MISO signals of the SPI bus for
peripherals that either do not have a Chip Select (CS)
cascade, or their multimodality (SPI/DPI/QPI) does
not guarantee the formation of a high-impedance state
on the output lines;

• DD3 inverter, which converts the SCK signal from
SPI0.0 mode to SPI1.0, which is caused by the SDO
carry phase on the rising edge of CLK shift register. In
SPI0.0 mode, data can only be modified by the falling
edge of SCK;

• DD4 shift register, designed to convert the 8-bit word
of the parallel input Dx to the serial signal SDO. It
provides reading of the states of the on-board keyboard
and the /CdSD (Card SD Insert) signal of the memory
card;

• DD5 shift register with SDI serial input and 8-bit
parallel output, which provides identification of the
system components states, for example, performing
file operations of an SD card connected to the X3 slot
or an embedded SPI-Flash drive DD6, accessing to the
DRAM of DD7 program memory buffering chip.

The functional multiplexity of GPIO lines of Wi-Fi

modules, like all SoC and MCU devices, allows you to

change their purpose at different stages and modes of

operation, and not only by software. For example, the lines

io15=0, io0=1 and io2=1 put the controller in the code

loading mode from the on-board SPI-Flash – the standard

launch of the embedded program, and with the values

io15=0, io0=0 and io2=1 they load this system to the on-

board SPI-Flash by the stream from UART port. In

addition, in the ESP12F module, which is used as a
research platform, the io2 line is hardware-connected to

the on-board blue LED and can be used programmatically

(activ.Low) to display the status of system processes.

The order of signals assignment is determined by the

criterion of optimization of address sampling bit

manipulations. The importance of using this approach is as

follows. ARM7 SoC and MCU have an end-to-end

addressing map, that is, program code memory, RAM and

peripheral registers, which include GPIOs in particular,

belong to the same physical address space. Registers are

32-bit (machine word). There are two ways to set bits in a
word. First, programmatically of masks manipulating.

Address formation is carried out according to the scheme:

load the GPIO address into the register file (RF), read the

value, then – masks to clear the corresponding bits, after

that the AND operation is performed; the bit setting mask

is loaded into the RF and a logical OR operation is

performed. From the point of view of computing resources

usage such a process is very expensive, but the main

problem is the difficulty of ensuring the atomicity of the

process. Handling of hardware interrupts or RTOS task

switching can have unintended consequences because the
masking sequence can be interrupted and intermediate

values in the peripheral register will be modified. For such

risks, preference should be given to the Bit-banding

method, which is recommended for developers by the

ARM-Limited company [7]. Programmatically, the

method is usually implemented through a macro, which

after the assembly preprocess is transformed into the code

form of the direct addressing operation [7].

IV. SOFTWARE DRIVER MULTYSWITCHER
The MultySwitcher software driver, which manages

the SPIExpander hardware driver, was developed

according to the HAL paradigm, that is, it is abstracted

from the hardware except for the macro definitions in the

header file of the driver library. The hardware system

resources to which SPIExpander belongs, such as a router
of asynchronous information flows and data, is a heavily

loaded and critical resource. Given that collision detection

on the bus and elimination of their consequences is a

complex task that requires significant processing power of

the processor, it was decided to use RTOS methods to

prevent abnormal situations of multiple access. This

approach became decisive in obtaining the software model

of the MultySwitcher driver (Fig. 2).

Calls to the SPIExpander driver from such processes as

performing an operation with non-volatile storage devices,

writing/reading DRAM, displaying data on the LCD
display and binary states on VD-indicators, reading the

state of physical buttons are asynchronous. Process

priorities are different. It is the highest for DRAM access,

the lower for operations with SD cards and SPI-Flash

drives. The lowest priority is considered for operations with

the LCD display, VD indicators and keyboard. A common

feature of working with non-volatile drives and LCD

display is the need to ensure the continuity of operations,

that is, removing the /CS# signal automatically ends the

operation cycle.

FIG. 2. The MultySwitcher software model as UML activity diagram.

4
Vol 2, No 2, Paper 02011, pp. 1-6 (2024)

SISIOT Journal | journals.chnu.edu.ua/sisiot

Premature cycle termination, in most cases, violates

the integrity of the data without the possibility of

determining the resulting consequences programmatically.

For this reason, receiving the io2=1 selection signal of the

decoder and completion of the task is carried out in the

body of the task itself.

The software model of the MultySwitcher driver

consists of three branches: maintenance of the queue of
access tasks to system peripheral devices (left part of

access tasks to system peripheral devices (left part of the

diagram), idle passage (in the center of the diagram) and

providing access to the current tasks of the queue or the

task that caused the activation of the driver to the

corresponding hardware resource. In general, the

algorithm of the MultySwitcher driver can be considered

as a task manager, which suspends the execution of the

task and manages the task renewal queue using the Notify

mechanism. The priority of tasks is defined by the user by

RTOS means, that is, MultySwitcher as a separate task –
the access manager has a lower queue management

priority than the RTOS core.

V. APPLICATION OF SPIEXPANDER TO PROVIDE HMI
GRAPHICS OUTPUT

The advantages of introducing the SPI bus expander

into the structure of the embedded device become

significant with the implementation of their HMI

components, namely in displaying data on the LCD

display.

As practice shows, the applied implementation of

embedded systems imposes additional requirements and

requires more complex and comprehensive solutions. In

particular, it was noted in [6] that in normal mode the

embedded system functions autonomously, and access to

services can be carried out through the on-board HMI,
which includes an LCD monitor, a clock touch panel and

buttons, several non-volatile drives provide storage for

configuration files, control program, bitmap sprites and

recipes. That is, we are talking about serial-multiple access

to the SPI bus under the control of the host controller

implemented according to the decoder topology. Instead,

in the current study, a more progressive solution based on

a controller – SPI expander is proposed as a system proxy

driver.

A. Hardware driver DrvSPI2LCD. SPIExpander was used as

a system proxy driver that implements the function of a

network switch. The DrvSPI2LCD hardware adapter

driver, which converts DMA packets into a stream of 16-

bit words, is connected to one of its serial ports. The

resulting circuitry of the DrvSPI2LCD driver is shown in

Fig. 3. The synthesis of control signals is presented on the

basis of the time diagram (Fig. 4).

The adapter driver consists of two digital cascades:

shift registers and a system signal synthesizer for

controlling the LCD matrix and data buffering. Shift

registers D3 and D4 are serially cascaded by the SQ7-SDI

signal and implement the function of converting the serial
MOSI signal of the SPI bus into a parallel bus of a 16-bit

LCD control word and RGB data. The synthesizer of

system signals forms strobes from SCK synchronous

pulses: STCP – the control signal of data parallel transfer

register from the cascades of the serial shift register to the

latch register, which are components of microcircuits D3

and D4; D/C_LCD – LCD input word type selection

signal: logical 1 indicates RGB data, and logical 0

switches the matrix to the command packet reading mode;

WR_LCD is a timing signal for writing data to the control

register of the controller or writing to the GRAM LCD.

In our previous research [1], the problem of data
buffering was solved by a monovibrator and an RC circuit.

However, there was instability due to the variability of the

input capacitance of the R/C pin and the temperature drift

of the timing resistor. According to the results of our

research, a radical improvement of the synthesis of system

signals was achieved due to the two-stage cycle of writing

a word. In accordance with the tested concept, the

formation of the buffering strobe of the 16-bit command

word or STCP data is carried out on the leading edge of

the 16th SCLK pulse with a delay of tpd= 4 – 10 ns on the

D3.2 inverter. Loading the word into the LCD matrix is
carried out already at the second stage according to the

rising signal WR_LCD, which is formed on 8 SCLK

pulses. Thus, the clock frequency of the LCD matrix may

not exceed 10 MHz, even at the maximum SPI bus

frequency of 80 MHz.

The DrvSPI2LCD driver works like this. The /CS3 line

of the X1 connector receives log.0 from the SPIExpander

driver – the signal for selecting the peripheral device of the

LCD matrix. As a result of the inversion of the /CS3 signal

by the D3.1 element, a logic unit appears at the R inputs,

which transfers the triggers D2.1 and D2.2, the binary

counter D1 and the registers D3 and D4 from the reset state
to the normal mode of operation. The /CS3 signal must be

held constant until the data transaction is complete. The

following SCK pulses shift the logic values of the MOSI

line sequentially: first through the internal stages of the D3

register, then through the SQ7-SDI connection and the

internal stages of the D4 register. When 16 SCK pulses

pass on the Q8 line, the counter D1 will fall from log.1 to

log.0, this event is the formation of the STCP gate –

loading of states from the internal shift cascades to the

output register due to the inversion of the falling edge into

the rising edge (LC line of registers dynamic), which
causes the data to be latched at outputs Q0-Q7 of both

registers. At the same time, the STCP signal will cause the

transfer of log.1 from the D input to the Q output of the

D2.1 flip-flop, which will put the 2I-Hi element into the

active state of transmitting the falling edge on every

subsequent eighth SCK pulse. Thus, when a signal with a

rising edge is formed on the Q8 line of the binary counter,

it, after passing through two inverters D3.3 and D3.4, will

be fed to the D_WR line of the X2 connector – the

connection of the LCD matrix as a WR_LCD signal. The

first rising edge at the input C of the trigger D2.2, which is

the 24 SCK pulse, will lead to the transfer of the line from
log.0 – the data DB0-DB15 is the command word, on

D/C_LCD=1 – the data word is the command parameters

or writing to GRAM LCD.

B. The DrvSPI2LCD software driver DrvLoadBlock. The

DrvSPI2LCD hardware driver is controlled by the

DrvLoadBlock software driver. The algorithm of its work

is linear. When performing the basic operation of loading

5
Vol 2, No 2, Paper 02011, pp. 1-6 (2024)

SISIOT Journal | journals.chnu.edu.ua/sisiot

FIG. 3. Circuits of the DrvSPI2LCD.

a graphic sprite into the GRAM LCD, the transfer of the

graphic block is carried out in six phases. Selection of the

DrvSPI2LCD driver is achieved by setting the SA2-SA0

address bus bits and coloring the E2=0 line of the decoder,
which causes the /CS3=0 line to shift. The 16-bit word

0x002A of the Column Address Set command is loaded

into the SPI transmitter and the hardware transfer is carried

out. In the same way, two words are transferred: the

addresses of the start and end columns of the sprite. The

decoder lines are programmatically transferred to the state

E2=1, and after 10 system clocks they return to E2=0

again. The code 0x002B of the Page Address Set command

and two words are transmitted: the addresses of the start

and end lines of the sprite. The controller of the SPI module

of the SoC is put into DMA mode and the cycle of loading

the data block into the GRAM LCD is started.
Since the E2 line is programmatically switched and

bytes are loaded into the SPI transmitter when forming the

Column Address Set and Page Address Set commands, the

sprite block transfer should be characterized as a quasi-

DMA mode. However, this circumstance does not

significantly reduce the efficiency of packet data

transmission on the LCD. For example, when displaying

only one current coordinate of a 3D printer extruder, which

is equivalent to 6 digits and an area of 2860 pixels, only the

FIG. 4. The timing diagram of DrvSPI2LCD driver activity.

first 7 words are transmitted with software clocking, that

is, the efficiency reaches 99.8 %.

VI. CONCLUSION
Hardware and software solutions for building fully

functional IIoT systems based on high-speed SPI are

offered. They implemented in the form of an expander

module for the basic capabilities of the SPI bus, designed

to intensify information exchange over the Wi-Fi channel

between the SoC controller and peripherals: IO and LCD

extensions, SD cards, DRAM and SPI-Flash file storage.

The resulting circuitry is simple to implement in a discrete

miniboard design. However, it is more expedient to

implement the SPI expander on the basis of FPGA or in the

form of specialized integrated circuits. This will allow

MCU and SoC processors to acquire the characteristics of
full-fledged terminal systems with combined control, both

local and IIoT remote.

Representation of the SPI expander in the research as

an FSMC device is due to the problem of conjugation of

LCD matrices with a resolution of 640 × 480 and higher to

obtain HMI components of embedded systems. Hardware

conversion of the SPI mode video stream to RGB16

improves the display of screen widgets, since the built-in

3/4-line Display Serial Interface is limited to a clock

frequency of 10 MHz.

The above research results are valuable for the creation

of IIoT systems based on Wi-Fi-SoC modules, for
example, ESP12F, ESP32-Wroom, Murata

LBWA1KL1FX or similar.

AUTHOR CONTRIBUTIONS
A.Ya. – conceptualization, methodology, investigation;

writing (original draft preparation), writing (review and

editing).

COMPETING INTERESTS
The author declare no competing interests.

6
Vol 2, No 2, Paper 02011, pp. 1-6 (2024)

SISIOT Journal | journals.chnu.edu.ua/sisiot

REFERENCES
[1] A. Yarmilko, "High-Speed SPI Bus Host Controller for

Embedded Systems," in Proc. 2022 IEEE 41st Int. Conf.
Electron. Nanotechnol. (ELNANO), Kyiv, Ukraine, 2022,
pp. 662–666, doi:

10.1109/ELNANO54667.2022.9927055.
[2] A. Karmakar, N. Dey, T. Baral, M. Chowdhury and M.

Rehan, "Industrial Internet of Things: A Review," in Proc.
2019 Int. Conf. Opto-Electron. Appl. Opt. (Optronix),
Kolkata, India, 2019, pp. 1–6, doi:
10.1109/OPTRONIX.2019.8862436.

[3] R. Budihal, “Emerging trends in embedded systems and
applications,” 2010. [Online]. Available:

https://www.embedded.com/emerging-trends-in-
embedded-systems-and-applications/. Accessed on: Nov.
4, 2024.

[4] A. J. Gapinski and Z. J. Czajkiewicz, “Automated
Manufacturing: Processes and Technologies,” Int. Conf.
Eng. Comput. Educ., Buenos Aires, Argentina, 2009.
[Online]. Available:
https://www.researchgate.net/publication/319990699_Aut

omated_Manufacturing_Processes_and_Technologies.
Accessed on: Nov. 4, 2024.

[5] A. Kalnoskas, “Embedded GUI library for professional
HMI development,” 2018. [Online]. Available:
https://www.microcontrollertips.com/emwin-embedded-
gui-library-for-professional-hmi-development/. Accessed
on: Nov. 4, 2024.

[6] AN2784 Application note. Using the high-density
STM32F10xxx FSMC peripheral to drive external
memories. [Online]. Available:

https://www.st.com/resource/en/application_note/cd00200
423-using-the-highdensity-stm32f10xxx-fsmc-peripheral-
to-drive-external-memories-stmicroelectronics.pdf.
Accessed on: Nov. 10, 2024.

[7] ARMDeveloping. Chapter 3. Programmers Model. Bit-
banding. [Online]. Available:
https://developer.arm.com/documentation/ddi0439/b/Progr
ammers-Model/Bit-banding. Accessed on: Nov. 10, 2024.

Andrii Yarmilko

PhD in Information Technologies,

Docent, Associate Professor at

Department of Automated Systems

Software, Bohdan Khmelnytsky

National University of Cherkasy.

Research interests: computer vision and

pattern recognition, industrial internet of

things, human-machine interaction,

information security and dependability

of embedded systems. Author of more

than 100 publications.

ORCID ID: 0000-0003-2062-2694

Експандер SPI-FSMC з підтримкою режиму DMA
Андрій Ярмілко*

Кафедра програмного забезпечення автоматизованих систем, Черкаський національний університет імені Богдана Хмельницького,
Черкаси, Україна

*Автор-кореспондент (Електронна адреса: a-ja@vu.cdu.edu.ua)

АНОТАЦІЯ Надано подальшого розвитку апаратним та програмним рішенням для побудови повнофункціональних
систем IIoT на базі швидкісного SPI. Досліджено можливість подолання перешкод, спричинених обмеженістю набору
ліній введення/виведення (GPIO), до більш повного використання надлишкового поза забезпеченням інформаційного
обміну «точка доступу – станція» обчислювального ресурсу WiFi-модулів для вирішення задач, пов’язаних з іншими
аспектами функціонування вбудованої системи. Актуальним є розширення базових можливостей компонентів
вбудованої системи із врахуванням забезпечення комплексного доступу до шини SPI за всім функціоналом типових
IIoT-систем. Реалізацію запропонованих апаратних та програмних рішень виконано у форматі модуля-експандера
базових можливостей шини SPI, призначеного для інтенсифікації інформаційного обміну по WiFi-каналу між SoC-
контролером та периферією: IO та LCD розширеннями, SD-картами, DRAM і SPI-Flash файловими сховищами.
Розроблено апаратний драйвер SPIExpander та програмний драйвер MultySwitcher для управління ним. В розробці
програмного драйвера застосовано парадигму HAL та використано методи RTOS задля запобігання нештатних ситуацій
множинного доступу до шини. Переваги застосування швидкісного SPI на противагу інтерфейсу STM-FSMC
продемонстровано на прикладі реалізації HMI-компонентів вбудованих систем. SPIExpander застосовано в якості
системного проксі-драйвера для реалізації функції мережевого комутатора, до одного з послідовних портів якого
підключається керований програмним драйвером DrvLoadBlock апаратний драйвер-адаптер DrvSPI2LCD для
перетворення DMA-пакетів у потік 16-розрядних слів. Апаратно підвищено стабільність та мінімізовано набір вхідних
ліній генерації системних сигналів управління LCD і проведення DMA-блочних операцій. Представлено програмну
модель драйвера для реалізації поліядерного та мультипотокового інформаційного обміну. Надано рекомендації
щодо використання експандера SPI-FSMC.

КЛЮЧОВІ СЛОВА хост-контролер, шина SPI, вбудована система, IIoT, людино-машинний інтерфейс.

This article is licensed under a Creative Commons Attribution 4.0 International License.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://www.embedded.com/emerging-trends-in-embedded-systems-and-applications/
https://www.embedded.com/emerging-trends-in-embedded-systems-and-applications/
https://www.researchgate.net/publication/319990699_Automated_Manufacturing_Processes_and_Technologies
https://www.researchgate.net/publication/319990699_Automated_Manufacturing_Processes_and_Technologies
https://www.st.com/resource/en/application_note/cd00200423-using-the-highdensity-stm32f10xxx-fsmc-peripheral-to-drive-external-memories-stmicroelectronics.pdf
https://www.st.com/resource/en/application_note/cd00200423-using-the-highdensity-stm32f10xxx-fsmc-peripheral-to-drive-external-memories-stmicroelectronics.pdf
https://www.st.com/resource/en/application_note/cd00200423-using-the-highdensity-stm32f10xxx-fsmc-peripheral-to-drive-external-memories-stmicroelectronics.pdf
https://orcid.org/0000-0003-2062-2694
http://creativecommons.org/licenses/by/4.0/

