Security
of Infocommunication Systems
and Internet of Things

2024 Vol 2, No 2

https://doi.org/10.31861/sisi0t2024.2.02010

Received 16 December 2024; revised 20 December 2024; accepted 28 December 2024; published 30 December 2024

Research Into the Efficiency of Processing a Numerical
Random Sequence by Chaotic-type Cellular Automata

Heorhii Prokhorov” and Denys Trembach

Software Engineering Department, Yuriy Fedkovych Chernivtsi National University, Chernivtsi, Ukraine
*Corresponding author (E-mail: g.prokhorov@chnu.edu.ua)

ABSTRACT The article presents the results of a study of the processing of a sequence of random numbers obtained from a
single webcam frame for compliance with one of the requirements of information cryptosecurity: uniformity of distribution.
For the experiment an ordinary domestic web camera was used. The functionality of extraction a random number
sequence from a frame of a web camera was discussed in the previous investigation. Java language provided software
support. Before the main investigation a random number sequence generated by Java class was explored. The practically
permissible level of uniformity of distribution for this sequence was obtained. For Java class SecureRandom this level is
equal to 1.7%. For the purposes of experiment a high-speed sequence processing functionality based on cellular automata
has been developed. As an origin of experiment an occasional snapshot of the web camera was used. As a result, it was
found that a processing by chaotic rules (rules 30, 90, 105, 150) of linear cellular automata improves the quality of
distribution of elements of a sequence almost to ideal level. It was found that the rule 30 provides the highest efficiency
and productivity, but does not differ much from other rules. All the results were supported by statistical calculations and
drawing custom graphical histograms especially designed for the experiment with a help of Java statistical and graphical
classes. It was established that by selecting the number of iterations, the required level of uniformity of the distribution of
sequence elements can be obtained. In theory a high-resolution web camera can provide a productivity of 2 Gbit/s. The
results of the investigation can become the basis for the development of an affordable high-speed reliable hardware-software

generator of a sequence of random numbers.

KEYWORDS software engineering, crypto-resistance, cellular automata, random number sequences, webcam.

. INTRODUCTION

andom number generation plays an important role in
Rensuring cryptographic security, for example, the

generation of passwords, keys, PIN-codes. Such
generation is subject to a set of requirements approved by
NIST or BSI protocols. However, when generating a
sequence of random numbers (RNS), these demands are
reaching a new level.

At the forefront of modern requirements is the urgent
task of software engineering — the generation of RNS with
a performance of at least 100 Mbit/s, and it is desirable to
increase the speed to 1 Gbit/s. This requirement is the
basis of steganography - the creation of secure data
transmission channels, where not only the transmitted
data is protected, but also the fact of transmission itself
i.e., see [1]. In this case, the encrypted data is "dissolved"
in a sequence of random numbers and is transmitted to the
consumer in this form. If such a transmission is
intercepted, it will be extremely difficult to calculate
whether the packet contains an informative component or
whether it is simply random content to overload the
interception channels.

As for the generated RNS themselves, they must meet
all the requirements for cryptosecurity: the level of chaos
(randomness), a long cycle period, and a uniform
distribution of elements. The big problem at the moment is
precisely balancing all these requirements in a single
device — a high-performance RNS generator (GRNS).

Il. ANALYSIS OF CURRENT LITERARY DATA
AND FORMULATION OF THE PROBLEM

Three approaches are used to generate random
numbers.

The first approach — software — is based on specialized
mathematical algorithms of software engineering.
Unfortunately, software generators are to some extent
predictable. As shown in study [2], mathematical proofs of
the unsatisfactory cryptoresistance of pseudo-random
sequences are available. The algorithm for generating a
pseudo random sequence is publicly available, for
example, for the Java Oracle documentation is on open
access [3, 4], which makes it theoretically possible to
attack the encryption algorithm.

Thus, we can say that the software method of
generating random numbers, due to its predictability, is not
completely crypto-resistant, although it fully satisfies all
other requirements for cryptographic information security
(CIS).

The second approach — hardware — is built using
physical devices that use any physical stochastic noise
sources. For example, in several recent studies [5, 6] a
beta-emission counter is used to generate random numbers.
This approach is completely crypto-resistant but requires
additional expensive and exotic equipment.

The above limitations lead to the conclusion that it is
necessary to study the possibility of using a simple,
affordable webcam as the basis for a reliable, high-

p-ISSN 2786-8443, e-ISSN 2786-8451, 02010(5) | Yuriy Fedkovych Chernivtsi National University | www.chnu.edu.ua

SISIOT Journal | journals.chnu.edu.ua/sisiot

performance RNS generator. A similar idea was already
considered in study [7], but at that time (2014) the
theoretical possible performance was limited to
200 Mbit/s, and the maximum webcam mode did not
exceed VGA (640%x480). But modern requirements
recommend a performance of at least 100 Mbit/s, and
preferably 1 Ghit/s.

In recent studies [8, 9] the statistical characteristics of
the RNS obtained from a webcam were considered, and it
turned out that with all the positive aspects, such a
characteristic as a uniform distribution of elements by
value remains unsatisfactory, which is unacceptable from
the point of view of the requirements of the CIS.

I1l. THE PURPOSE AND OBJECTIVES OF THE RESEARCH

The purpose of the work is: to study the possibility of
improving the characteristics of the RNS, namely the
characteristics of the distribution of elements.

The tasks of the study are as follows:

- to investigate the form of the distribution of the
original RNS obtained from the web camera frame;

- to investigate the results of RNS processing by a
cellular automaton (CA) of a chaotic rule (30, 90, 105,
150);

- to determine the intensity of the use of CA to improve
the statistical characteristics of RNS.

The random number generator implemented in this
work was developed as part of a cryptographic system for
protecting the information transfer channel using
steganography.

IV. MATERIALS, CONDITIONS AND RESEARCH METHOD
A. Research equipment.

- Desktop:

o CPU: AMD Ryzen 5 5600 4.4ghz,

o> RAM: 16gb 3200mhz,

> SSD: Kingston NV1 250gb,

o GPU: Nvidia GeForce GTX 1660ti;

- Anker Powerconf Web Camera C200. QQVGA
(176x144); QVGA (320x240); VGA (640%x480); SVGA
(800x600); HD (1280x720); Full HD (1920%1080); Quad
HD (2560x1440);

- webcam com.github.sarxos.webcam version 0.3.12;

- software: OS Ubuntu 22 LTS, 64 bit; Java Amazon

Corretto 17.0.5; IntelliJ IDEA 2023.3.4 (Ultimate Edition);
package com.github.sarxos.webcam version 0.3.12 —
frame capture; javax.imageio package — video image
processing; package java.security.SecureRandom —
software generation of a random sequence.
B. Research methods. The research was based on the
results of previous works [8, 9], which described in detail
the method of extracting RNS from a web camera frame.
The functionality for calculating and visualizing the
statistical characteristics of RNS was improved.

Selecting the methods for improving the statistical
characteristics of RNS, cryptoprimitives were considered -
linear cellular automata (CA), see [10]. Fig. 1 graphically
illustrates the basics of the chaotic type CA functionality —
rules 30, 90, 105, 150.

Fig. 1 shows the illustrated results of the CA operation
and the results of the operation at 20 iterations. The initial
conditions are given only one black cell (logical 0) in the

Vol 2, No 2, Paper 02010, pp. 1-5 (2024)

center of the input horizontal sequence (upper horizontal
row). All four rules demonstrated chaos (unpredictability)
at the 20th iteration, but it is visually noticeable that the
ratio of ones and zeros (50:50) is more inherent in rule 30
(CA-30). This is one of the requirements of the CIS for
sequences of random numbers.

et "H i HEa:

[

50

i 1
W [
FIG. 1. Graphical illustration of the operation of chaotic cellular
automata (CA) with rules 30, 90, 105, 150 over 20 iterations.

C. Conditions of experiment. To provide clear experiment
an ordinary occasional web camera snapshot was created,
Fig. 2.

NN NN -

FIG. 2. An occasional snapshot from my window.

There were no special selections or preparations to
shoot a snapshot. The only requirement was only to make
a colorful frame. Time is 11.00 Kyiv time, 14 Dec, East
direction.

This frame later formed a basis for investigation the
method of improvement statistical characteristics using
cellular automata.

V. THE RESULTS OF THE INVESTIGATION
OF THE GENERATED SEQUENCES

The SecureRandom class of Java language is specially
designed for generating crypto-resistant RNS [3]. It
guarantees the consistency of all aspects of cryptosecurity:
- productivity, distribution, chaos - except for one thing: its
periodicity and predictability can be easily discerned.

Elements of the ideal uniform sequence take values in
the range [-128 .. +127] — a total of 256 values, which
corresponds to the byte data type of Java programming.
Also, in ideally generated RNS, the presence of each value
must be strictly equal to 1/256 or 0.385%. In practice, such
a precision is unreachable. If a sequence is generated, for
example, for 100 thousand elements, the presence value
must be adjusted in the sequence exactly 390 times

SISIOT Journal | journals.chnu.edu.ua/sisiot

(100 000 : 256 = 390.625). To provide such a precision in
practice isa complicated task. However, on practice certain
deviations from the ideal are permitted. Let's investigate
these practically permissible deviations in software
generated RNS.

Let's explore a sequence generated by SecureRandom
class of the Java programming language and find out what
percentage deviation it has, Fig. 3.

%% Byte Percentage Histogram

v
04,

" Bytevalue
FIG. 3. A histogram of the distribution of elements by RNS value,
generated by the SecureRandom class.

Fig. 3 shows the RNS spectrum generated by
SecureRandom. The abscise axis (horizontal) shows a
range of possible values. For Java, this range is [-128 ..
+127]. The vertical axis shows the “presence participation”
— the number of bytes of certain value as a percentage.

The standard deviation from mean value (thin blue line
at approximately 0.39) is approx. equals to 0.0065 (about
1.6%). We consider this value (1.7%) to be practically
permissible one.

Now we can investigate the histogram of values
distribution (spectrum) of the original frame shown above
on Fig. 2. The method of extraction a sequence of numbers
fron a frame of web camera was discussed in [9]. Spectrum
of distribution of the number sequence obtained from the
frame is demonstrated on Fig. 4.

%% Byte Percentage Histogram

o =60.0%

. UNPROCESSED
08

06

0.4 e

Byte value

0.

Sk iiime ik

FIG. 4. Histogram of the distribution by value (spectrum) of raw
RNS from the snapshot of Fig. 2. Unprocessed.

The histogram on Fig. 4 shows that a minimum in
distribution has value -2 and. The local maximum presence
was demonstrated by a values of -57 and +38. Such local
extrema can play the role of a “fingerprint” for a generator,
this fact is rather unwelcome, but not critical one. The
distribution is not uniform, but chaotic one, the standard
deviation from mean value is approx. equals to 60.0%. This
does not satisfy the requirements of CIS, for the reason the
original RNS requires extra processing.

Fig. 5 shows the spectrum of the original RNS after 1
cycle (iteration) processing of CA-30.

Vol 2, No 2, Paper 02010, pp. 1-5 (2024)

Byte Percentage Histogram

Percentage, %%
o=54.7%

. 1 iteration
1.0

0.8

08

04

03

I |
Byte value
FIG. 5. Histogram of the distribution of values after processing
CA-30. 1 iteration.

Fig.5 shows a significant improvement of the
histogram towards uniformity. The standard deviation has
decreased from 60% to 54%. However, this is still not
satisfactory according to the requirements of the CIS,
because the practically permissible level is 1.6%. The
following Fig. 6 shows the spectrum after 10 iterations of
CA-30 processing.

PeTcentage. %%

Byte Percentage Histogram

u.é| o =20.5%

10 iterations

|

0.
:
|

mm

Byte value
FIG. 6. Histogram of the distribution of values after processing
CA-30. 10 iterations.

On Fig.6 it is noticeable that the chaos in the
distribution decreases. The “fingerprint” has completely
disappeared. The standard deviation has been decreased to
20.5%. It is possible that such a deviation will be sufficient
to accept the uniformity of the distribution as satisfactory.

The following Fig. 7 shows the spectrum after 20
cycles of CA-30 processing.

Per e, %% Byte Percentage Histogram

L]

o=4.0%

I

ﬁhe vaiue
FIG. 7. Histogram of the distribution of values after processing
CA-30. 20 iterations.

On Fig. 7, it is clearly visible that after 20 processing
cycles (iterations), the spectrum is close to practically
permissible, and in numerical value the deviation reached
the level of 4.0%, let us recall that for a practically
permissible spectrum this deviation is 1.6%. After 50
iterations, the deviation decreased to 0.8%, but the
processing time reached 1.5 seconds, which decreases the
generation method (speed) by almost two orders of
magnitude.

o S s

SISIOT Journal | journals.chnu.edu.ua/sisiot

VI. DISCUSSION OF RESEARCH RESULTS

The DescriptiveStatistics class of the Java
programming language provides the calculation of a
number of statistical characteristics of a sequence,
including: the minimum element (min), the maximum
element (max), the average value of the distribution
(mean), the standard deviation (std dev), the median
(median), for example, see [11]. All of them are
characteristic of statistics. However, to simplify the
material, we used only one parameter — the standard
deviation. The smaller its value, the more the
distribution resembles a uniform one. But the
practically satisfactory level of deviation has not been
determined. The ideal practical level is determined, it is
equal to 1.6%, but the satisfactory level remains
undefined.

CA-30 (rule 30) among other chaotic rules
demonstrates the highest speed and the best quality of
processing. It has been practically established that 20-
30 iterations according to the CA-30 rule lead to an
almost ideal state of the distribution of elements by
value, and a satisfactory level may be reached in 10
iterations.

The number of iterations significantly affects the
performance of the RNS generator. One iteration
reduces the performance by half, and 10 iterations -
almost 10 times. So, with 10 iterations in SVGA mode,
it is possible to actually obtain a performance of 14.4
Mbit/s. In Quad HD mode (2560x1440), and the camera
supports this mode, it is theoretically possible to reach
the level of 265 Mbit/s.

The discussion does not include consideration of
Java computing capabilities. Theoretically, it is possible
to carry out RNS processing method using CA in
parallel streams, then with an 8-core processor it is
possible to reach the level of 2 Ghit/s.

It should be noted separately that the proposed Java
method of processing the generated sequence gives an
instant statistical characteristic of the distribution of
values, unlike [7], where bulky software is used for this.
This allows you to use a regular smartphone as the
hardware and software basis of the generator.

VII. CONCLUSIONS

1. The distribution of elements by value is random,
but individual for each individual device (web camera),
which allows it to identify a hardware unit.

2. Processing of RNS by chaotic cellular automata
improves the uniformity of the distribution. The best
method is the Rule 30 one. The sequence processing time
is approximately equal to the generation time.

3. The processing intensity (number of iterations)
depends on the specified quality level (uniformity of the
distribution). For the practically permissible level at least
20 iterations are required.

General conclusion: processing of sequences of
random numbers generated using a web camera can serve
as the basis for the development of reliable hybrid
hardware-software RNS generator with a performance in
the future of up to 2 Gbit/sec.

Vol 2, No 2, Paper 02010, pp. 1-5 (2024)

AUTHOR CONTRIBUTIONS
H.P. — methodology, investigation; D.T. — software,
experiment.

COMPETING INTERESTS
The authors are declaring no competing interests.

REFERENCES

[1] A.Jammi, Y. Raju, S. Munishankaraiah, and K.
Srinivas, "Steganography: an overview," International
Journal of Engineering Science and Technology, vol. 2,
no. 10, pp. 5985-5992, Dec. 2010.

[2] F. Martinez, "Attacks on Pseudo Random Number
Generators Hiding a Linear Structure,” in Topics in
Cryptology, S. D. Galbraith, Ed., vol. 13161, Lecture
Notes in Computer Science, Cham: Springer, 2022, pp.
145-168.

[3] "Class SecureRandom," Java Platform Standard
Edition 8 Documentation. [Online]. Available:
https://docs.oracle.com/javase/8/docs/api/java/security/
SecureRandom.html.

[4] C.-H. Hsieh, X. Yao, Q. Zhang, M. Lv, R. Wang, and
B. Ni, "BCsRNG: A Secure Random Number Generator
Based on Blockchain," IEEE Access, vol. 10, pp.
98117-98126, 2022, doi:
10.1109/ACCESS.2022.3206450.

[5] S.Park, B. G. Choi, T. Kang, K. Park, Y. Kwon, and J.
Kim, "Efficient hardware implementation and analysis
of true random-number generator based on beta
source," ETRI Journal, vol. 42, no. 4, pp. 518-526,
Aug. 2020, doi: 10.4218/etrij.2020-0083.

[6] K. Park, S. Park, B.-G. Choi, et al., "A lightweight true
random number generator using beta radiation for loT
applications," ETRI Journal, vol. 42, pp. 951-964,
2020, doi: 10.4218/etrij.2020-0119.

[71 R.Li, "A True Random Number Generator algorithm
from digital camera image noise for varying lighting
conditions," in SoutheastCon 2015, Fort Lauderdale,
FL, USA, 2015, pp. 1-8, doi:
10.1109/SECON.2015.7132901.

[8] D. Dobrovolsky, D. Hanzhelo, H. Prokhorov, and D.
Trembach, "Research the Level of Chaotic and
Reliability in Webcam-generated Random Number
Sequences,” SISIOT, vol. 2, no. 1, p. 01004, Aug. 2024,
doi: 10.31861/sisi0t2024.1.01004.

[9] D. Hanzhelo and H. Prokhorov, "Investigation of
statistical characteristics of numerical random sequence
obtained from a web camera frame," Herald of
Khmelnytskyi National University. Technical Sciences,
vol. 337, no. 3(2), pp. 46-51, 2024, doi:
10.31891/2307-5732-2024-337-3-6.

[10] T. Toffoli and N. Margolis, Cellular Automata
Machines, Cambridge, MA, USA: MIT Press, 1987.

[11] Y. Dong, "Descriptive Statistics and Its Applications,"
Highlights in Science, Engineering and Technology,
vol. 47, pp. 16-23, 2023, doi: 10.54097/hset.v47i.8159.

https://docs.oracle.com/javase/8/docs/api/java/security/SecureRandom.html
https://docs.oracle.com/javase/8/docs/api/java/security/SecureRandom.html

Heorhii Prokhorov

He had received a Ph.D. in physics and
mathematics in 2006. Now is a Assistant
Professor of Software Engineering De-
partment, Yuriy Fedkovych Chernivtsi
National University. His research inter-
ests include cryptography, coding the-

Denys Trembach

Had received BS and MS degrees in In-
formation Security from Evropejs'kij
Universitet Financiv, Ukraine. Now is
studying on a Ph.D. in Computer Sci-
ence, Yuriy Fedkovych Chernivtsi Na-
tional University. He is currently a secu-

ory, hardware random number se-
quences generation.

ORCID ID: 0000-0001-7810-2785

rity practitioner, mentor, and part-time
lecturer. His research interests include
cybersecurity, applied Al, chaotic sys-
tems dynamics.

ORCID ID: 0000-0001-8095-4186

AocnipXeHHA edpeKTUBHOCTI 06PO6KU UNCNOBOI
BMNaAKOBOI NOCNIAOBHOCTI KNiTUHHMMM aBTOMaTaMM
XaOTUYHOrO TUNYy

leopriit Mpoxopos®, fleHnc Tpembay
Kadeapa nporpamHoro 3abesneyeHHA KOMN'IOTEPHUX cUCTEM, YepHiBeLbKUI HaLiOHaNbHUI yHiBepcUTeTy im. HOpia deabkoBuya, YepHiBui, YKpaiHa

*ABTOp-KOpecnoHAeHT (EnekTpoHHa agpeca: g.prokhorov@chnu.edu.ua)

AHOTALLIA Ha cyyacHomy eTani mporpama, WO reHepye BMMAAKOBI YMCNa, PU3MKYE BYTU 371aMaHOI0 Yepes3 3POCTaHHA
064MCNOBaNbHOT MOTYXHOCTI Cy4acHUX cucTeM. AnapaTtHa reHepauia 6a3yeTbcAa Ha CTOXaCTUYHUX (i3UYHMX ABULLAX, ane
3a6e3nevye HU3bKY NPOAYKTUBHICTb Ta HE3aA0BINbHI CTAaTUCTMYHI NapameTpu. Y poboTi NPONOHYETLCA BUKOPUCTOBYBATU
06PO6KY KNITMHHUMM aBTOMATaMM A1 MOKPALLEHHSA AEAKUX CTAaTUCTUYHUX NapaMeTpiB NOCNiILOBHOCTEN BUNALKOBUX YMUCEN,
Wo 3reHepoBaHi Beb-kamepot. Y [AOCNIAXKEHHI HaBeAEHO pPe3ynbTaTu MOKPALWEHHA CTAaTUCTUYHUX XapaKTEPUCTUK
MOCNiAOBHOCTI 4YMCen, OTPUMAHUX 3i 3BMYAMHOI Beb-Kamepu, WOAO0 AOTPUMAHHA OAHIEl 3 BMMOr KPWUNTOCTIMKOCTI:
PiBHOMIPHOrO PO3MOAjNy eNeMEeHTIB 3a 3HaYeHHAM. PaHile 6y10 BCTAHOBAEHO, LLLO CTOXAaCTUYHI NPOLLECH, L0 BiAOYBalOTbCA
B MaTpuLi Be6-Kamepu, BUKANKAIOTb XaOTUYHUIA PO3MNOAIN 3HAYEHb Y 3reHepoBaHil MoCAiA0BHOCTI BUNaaKoBux yncen. Lo
npobaemy MoKHa NoA0aTh 3a A40NOMOr0 06YMCAOBANbHOI NOTYXKHOCTI NiHIMHUX KAITUHHUX aBTOMATIB, 0C06/IMBO NpPaBu
30, 90, 105. 150. Lli KpunNTONPUMITUBK BiAOMI AK XaOTUYHI, AKi CMOXKMBAKOTb HU3bKY 0BYMCAIOBANbHY MOTYXHICTb. YCMiLLHICTb
3aCTOCYBaHHA OLHIOBANM Yy MOPIBHAHHI 3 FeHepaLi€lo BMMAAKOBMX YMCEN MPOrpamMHMM METOLO0M, 30Kpema K/iacom
SecureRandom moBu nporpamysaHHs Java. MoKasaHo, WO WASXOM BMBOPY KiNIbKOX iTepaLin MOXKHA OTPUMATUN HEeOobXiaHUI
piBeHb PIBHOMIPHOCTI PO3MOAiNy eNeMeHTIB MOCAiAOBHOCTI 3@ 3Ha4YeHHAM. OuiHKa Be/IMYMHW PIBHOMIPHOCTI po3noginy
3[i/ICHIOETbCA LWBMAKO 33 AONMOMOrOl CTaTUCTUYHOI 6i6ioTEKM MOBM MporpamyBaHHsA Java i moxe 6yt peanisoBaHa Ha
3BMYaliHOMY cMapTOHi, onepaLiiHiin cuctemi Android, 6€3 BUKOPUCTaHHA FPOMI3AKMUX CTaTUCTUYHUX NAKETIB. TEOPETUYHO
MOKasaHo, Wwo Beb Kamepa BMCOKOI PO3AibHOI 34aTHOCTI MOXKe 3abe3neunTn NPoAYKTUMBHICTb reHepaLii BUNagKoBUX YMcen
00 2 [6it/ceK. Pe3ynbtatv 4OCAISYKEHHA MOXYTb 6YTY BUKOPMCTaHI NpY MPOEKTYBaHHI anapaTHOro reHepaTopa nocaig0BHOCTI
BMMNAAKOBUX YNCEN.

K/NKOYOBI C/IOBA nporpamHa iHKeHepid, KPUNTOCTIMKICTb, KAITMHHI aBTOMaTtu, MOCNILOBHOCTI BUMAZKOBUX uuces, BeO
Kamepa.

@ @ This article is licensed under a Creative Commons Attribution 4.0 International License.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Vol 2, No 2, Paper 02010, pp. 1-5 (2024)

https://orcid.org/0000-0001-7810-2785
https://orcid.org/0000-0001-8095-4186
http://creativecommons.org/licenses/by/4.0/

