
2023 Vol 1, No 1

https://doi.org/10.1000/s0000-00-001

p-ISSN 2786-8443, e-ISSN 2786-8451, 02010(5) |Yuriy Fedkovych Chernivtsi National University|www.chnu.edu.ua

2024 Vol 2, No 2

https://doi.org/10.31861/sisiot2024.2.02010

Received 16 December 2024; revised 20 December 2024; accepted 28 December 2024; published 30 December 2024

Research Into the Efficiency of Processing a Numerical
Random Sequence by Chaotic-type Cellular Automata

Heorhii Prokhorov* and Denys Trembach
Software Engineering Department, Yuriy Fedkovych Chernivtsi National University, Chernivtsi, Ukraine

*Corresponding author (E-mail: g.prokhorov@chnu.edu.ua)

ABSTRACT The article presents the results of a study of the processing of a sequence of random numbers obtained from a
single webcam frame for compliance with one of the requirements of information cryptosecurity: uniformity of distribution.
For the experiment an ordinary domestic web camera was used. The functionality of extraction a random number
sequence from a frame of a web camera was discussed in the previous investigation. Java language provided software
support. Before the main investigation a random number sequence generated by Java class was explored. The practically
permissible level of uniformity of distribution for this sequence was obtained. For Java class SecureRandom this level is
equal to 1.7%. For the purposes of experiment a high-speed sequence processing functionality based on cellular automata
has been developed. As an origin of experiment an occasional snapshot of the web camera was used. As a result, it was
found that a processing by chaotic rules (rules 30, 90, 105, 150) of linear cellular automata improves the quality of
distribution of elements of a sequence almost to ideal level. It was found that the rule 30 provides the highest efficiency
and productivity, but does not differ much from other rules. All the results were supported by statistical calculations and
drawing custom graphical histograms especially designed for the experiment with a help of Java statistical and graphical
classes. It was established that by selecting the number of iterations, the required level of uniformity of the distribution of
sequence elements can be obtained. In theory a high-resolution web camera can provide a productivity of 2 Gbit/s. The
results of the investigation can become the basis for the development of an affordable high-speed reliable hardware-software
generator of a sequence of random numbers.

KEYWORDS software engineering, crypto-resistance, cellular automata, random number sequences, webcam.

I. INTRODUCTION
andom number generation plays an important role in

ensuring cryptographic security, for example, the

generation of passwords, keys, PIN-codes. Such

generation is subject to a set of requirements approved by

NIST or BSI protocols. However, when generating a
sequence of random numbers (RNS), these demands are

reaching a new level.
At the forefront of modern requirements is the urgent

task of software engineering – the generation of RNS with

a performance of at least 100 Mbit/s, and it is desirable to

increase the speed to 1 Gbit/s. This requirement is the

basis of steganography - the creation of secure data

transmission channels, where not only the transmitted

data is protected, but also the fact of transmission itself

i.e., see [1]. In this case, the encrypted data is "dissolved"

in a sequence of random numbers and is transmitted to the

consumer in this form. If such a transmission is
intercepted, it will be extremely difficult to calculate

whether the packet contains an informative component or

whether it is simply random content to overload the

interception channels.
As for the generated RNS themselves, they must meet

all the requirements for cryptosecurity: the level of chaos

(randomness), a long cycle period, and a uniform

distribution of elements. The big problem at the moment is

precisely balancing all these requirements in a single

device – a high-performance RNS generator (GRNS).

II. ANALYSIS OF CURRENT LITERARY DATA
AND FORMULATION OF THE PROBLEM

Three approaches are used to generate random

numbers.
The first approach – software – is based on specialized

mathematical algorithms of software engineering.
Unfortunately, software generators are to some extent

predictable. As shown in study [2], mathematical proofs of

the unsatisfactory cryptoresistance of pseudo-random

sequences are available. The algorithm for generating a

pseudo random sequence is publicly available, for

example, for the Java Oracle documentation is on open

access [3, 4], which makes it theoretically possible to

attack the encryption algorithm.
Thus, we can say that the software method of

generating random numbers, due to its predictability, is not

completely crypto-resistant, although it fully satisfies all
other requirements for cryptographic information security

(CIS).
The second approach – hardware – is built using

physical devices that use any physical stochastic noise

sources. For example, in several recent studies [5, 6] a

beta-emission counter is used to generate random numbers.

This approach is completely crypto-resistant but requires

additional expensive and exotic equipment.
The above limitations lead to the conclusion that it is

necessary to study the possibility of using a simple,

affordable webcam as the basis for a reliable, high-

R

2
Vol 2, No 2, Paper 02010, pp. 1-5 (2024)

SISIOT Journal | journals.chnu.edu.ua/sisiot

performance RNS generator. A similar idea was already

considered in study [7], but at that time (2014) the

theoretical possible performance was limited to

200 Mbit/s, and the maximum webcam mode did not

exceed VGA (640×480). But modern requirements

recommend a performance of at least 100 Mbit/s, and

preferably 1 Gbit/s.
In recent studies [8, 9] the statistical characteristics of

the RNS obtained from a webcam were considered, and it

turned out that with all the positive aspects, such a

characteristic as a uniform distribution of elements by

value remains unsatisfactory, which is unacceptable from

the point of view of the requirements of the CIS.

III. THE PURPOSE AND OBJECTIVES OF THE RESEARCH
The purpose of the work is: to study the possibility of

improving the characteristics of the RNS, namely the

characteristics of the distribution of elements.
The tasks of the study are as follows:
- to investigate the form of the distribution of the

original RNS obtained from the web camera frame;
- to investigate the results of RNS processing by a

cellular automaton (CA) of a chaotic rule (30, 90, 105,

150);
- to determine the intensity of the use of CA to improve

the statistical characteristics of RNS.
The random number generator implemented in this

work was developed as part of a cryptographic system for

protecting the information transfer channel using

steganography.

IV. MATERIALS, CONDITIONS AND RESEARCH METHOD
A. Research equipment.

- Desktop:
◦ CPU: AMD Ryzen 5 5600 4.4ghz,
◦ RAM: 16gb 3200mhz,
◦ SSD: Kingston NV1 250gb,
◦ GPU: Nvidia GeForce GTX 1660ti;
- Anker Powerconf Web Camera C200. QQVGA

(176×144); QVGA (320×240); VGA (640×480); SVGA

(800×600); HD (1280×720); Full HD (1920×1080); Quad

HD (2560×1440);
- webcam com.github.sarxos.webcam version 0.3.12;
- software: OS Ubuntu 22 LTS, 64 bit; Java Amazon

Corretto 17.0.5; IntelliJ IDEA 2023.3.4 (Ultimate Edition);

package com.github.sarxos.webcam version 0.3.12 –

frame capture; javax.imageio package – video image

processing; package java.security.SecureRandom –

software generation of a random sequence.
B. Research methods. The research was based on the

results of previous works [8, 9], which described in detail

the method of extracting RNS from a web camera frame.

The functionality for calculating and visualizing the
statistical characteristics of RNS was improved.

Selecting the methods for improving the statistical

characteristics of RNS, cryptoprimitives were considered -

linear cellular automata (CA), see [10]. Fig. 1 graphically

illustrates the basics of the chaotic type CA functionality –

rules 30, 90, 105, 150.

Fig. 1 shows the illustrated results of the CA operation

and the results of the operation at 20 iterations. The initial

conditions are given only one black cell (logical 0) in the

center of the input horizontal sequence (upper horizontal

row). All four rules demonstrated chaos (unpredictability)

at the 20th iteration, but it is visually noticeable that the

ratio of ones and zeros (50:50) is more inherent in rule 30

(CA-30). This is one of the requirements of the CIS for

sequences of random numbers.

FIG. 1. Graphical illustration of the operation of chaotic cellular

automata (CA) with rules 30, 90, 105, 150 over 20 iterations.

C. Conditions of experiment. To provide clear experiment

an ordinary occasional web camera snapshot was created,

Fig. 2.

FIG. 2. An occasional snapshot from my window.

There were no special selections or preparations to

shoot a snapshot. The only requirement was only to make

a colorful frame. Time is 11.00 Kyiv time, 14 Dec, East

direction.
This frame later formed a basis for investigation the

method of improvement statistical characteristics using

cellular automata.

V. THE RESULTS OF THE INVESTIGATION
OF THE GENERATED SEQUENCES

The SecureRandom class of Java language is specially

designed for generating crypto-resistant RNS [3]. It

guarantees the consistency of all aspects of cryptosecurity:

- productivity, distribution, chaos - except for one thing: its

periodicity and predictability can be easily discerned.
Elements of the ideal uniform sequence take values in

the range [-128 .. +127] – a total of 256 values, which

corresponds to the byte data type of Java programming.

Also, in ideally generated RNS, the presence of each value

must be strictly equal to 1/256 or 0.385%. In practice, such

a precision is unreachable. If a sequence is generated, for
example, for 100 thousand elements, the presence value

must be adjusted in the sequence exactly 390 times

3
Vol 2, No 2, Paper 02010, pp. 1-5 (2024)

SISIOT Journal | journals.chnu.edu.ua/sisiot

(100 000 : 256 = 390.625). To provide such a precision in

practice is a complicated task. However, on practice certain

deviations from the ideal are permitted. Let's investigate

these practically permissible deviations in software

generated RNS.
Let's explore a sequence generated by SecureRandom

class of the Java programming language and find out what

percentage deviation it has, Fig. 3.

FIG. 3. A histogram of the distribution of elements by RNS value,

generated by the SecureRandom class.

Fig. 3 shows the RNS spectrum generated by

SecureRandom. The abscise axis (horizontal) shows a

range of possible values. For Java, this range is [-128 ..

+127]. The vertical axis shows the “presence participation”
– the number of bytes of certain value as a percentage.

The standard deviation from mean value (thin blue line

at approximately 0.39) is approx. equals to 0.0065 (about

1.6%). We consider this value (1.7%) to be practically

permissible one.
Now we can investigate the histogram of values

distribution (spectrum) of the original frame shown above

on Fig. 2. The method of extraction a sequence of numbers

fron a frame of web camera was discussed in [9]. Spectrum

of distribution of the number sequence obtained from the

frame is demonstrated on Fig. 4.

FIG. 4. Histogram of the distribution by value (spectrum) of raw

RNS from the snapshot of Fig. 2. Unprocessed.

The histogram on Fig. 4 shows that a minimum in

distribution has value -2 and. The local maximum presence

was demonstrated by a values of -57 and +38. Such local

extrema can play the role of a “fingerprint” for a generator,

this fact is rather unwelcome, but not critical one. The

distribution is not uniform, but chaotic one, the standard

deviation from mean value is approx. equals to 60.0%. This

does not satisfy the requirements of CIS, for the reason the

original RNS requires extra processing.
Fig. 5 shows the spectrum of the original RNS after 1

cycle (iteration) processing of CA-30.

FIG. 5. Histogram of the distribution of values after processing

CA-30. 1 iteration.
Fig. 5 shows a significant improvement of the

histogram towards uniformity. The standard deviation has

decreased from 60% to 54%. However, this is still not

satisfactory according to the requirements of the CIS,

because the practically permissible level is 1.6%. The

following Fig. 6 shows the spectrum after 10 iterations of

CA-30 processing.

FIG. 6. Histogram of the distribution of values after processing

CA-30. 10 iterations.

On Fig. 6 it is noticeable that the chaos in the

distribution decreases. The “fingerprint” has completely

disappeared. The standard deviation has been decreased to

20.5%. It is possible that such a deviation will be sufficient

to accept the uniformity of the distribution as satisfactory.
The following Fig. 7 shows the spectrum after 20

cycles of CA-30 processing.

FIG. 7. Histogram of the distribution of values after processing

CA-30. 20 iterations.

On Fig. 7, it is clearly visible that after 20 processing

cycles (iterations), the spectrum is close to practically

permissible, and in numerical value the deviation reached

the level of 4.0%, let us recall that for a practically

permissible spectrum this deviation is 1.6%. After 50

iterations, the deviation decreased to 0.8%, but the

processing time reached 1.5 seconds, which decreases the
generation method (speed) by almost two orders of

magnitude.

4
Vol 2, No 2, Paper 02010, pp. 1-5 (2024)

SISIOT Journal | journals.chnu.edu.ua/sisiot

VI. DISCUSSION OF RESEARCH RESULTS
The DescriptiveStatistics class of the Java

programming language provides the calculation of a

number of statistical characteristics of a sequence,

including: the minimum element (min), the maximum

element (max), the average value of the distribution

(mean), the standard deviation (std dev), the median
(median), for example, see [11]. All of them are

characteristic of statistics. However, to simplify the

material, we used only one parameter – the standard

deviation. The smaller its value, the more the

distribution resembles a uniform one. But the

practically satisfactory level of deviation has not been

determined. The ideal practical level is determined, it is

equal to 1.6%, but the satisfactory level remains

undefined.
CA-30 (rule 30) among other chaotic rules

demonstrates the highest speed and the best quality of

processing. It has been practically established that 20-
30 iterations according to the CA-30 rule lead to an

almost ideal state of the distribution of elements by

value, and a satisfactory level may be reached in 10

iterations.
The number of iterations significantly affects the

performance of the RNS generator. One iteration

reduces the performance by half, and 10 iterations -

almost 10 times. So, with 10 iterations in SVGA mode,

it is possible to actually obtain a performance of 14.4

Mbit/s. In Quad HD mode (2560×1440), and the camera

supports this mode, it is theoretically possible to reach
the level of 265 Mbit/s.

The discussion does not include consideration of

Java computing capabilities. Theoretically, it is possible

to carry out RNS processing method using CA in

parallel streams, then with an 8-core processor it is

possible to reach the level of 2 Gbit/s.
It should be noted separately that the proposed Java

method of processing the generated sequence gives an

instant statistical characteristic of the distribution of

values, unlike [7], where bulky software is used for this.

This allows you to use a regular smartphone as the

hardware and software basis of the generator.

VII. CONCLUSIONS
1. The distribution of elements by value is random,

but individual for each individual device (web camera),

which allows it to identify a hardware unit.
2. Processing of RNS by chaotic cellular automata

improves the uniformity of the distribution. The best

method is the Rule 30 one. The sequence processing time

is approximately equal to the generation time.
3. The processing intensity (number of iterations)

depends on the specified quality level (uniformity of the

distribution). For the practically permissible level at least
20 iterations are required.

General conclusion: processing of sequences of

random numbers generated using a web camera can serve

as the basis for the development of reliable hybrid

hardware-software RNS generator with a performance in

the future of up to 2 Gbit/sec.

AUTHOR CONTRIBUTIONS
H.P. – methodology, investigation; D.T. – software,

experiment.

COMPETING INTERESTS
The authors are declaring no competing interests.

REFERENCES
[1] A. Jammi, Y. Raju, S. Munishankaraiah, and K.

Srinivas, "Steganography: an overview," International

Journal of Engineering Science and Technology, vol. 2,

no. 10, pp. 5985-5992, Dec. 2010.

[2] F. Martinez, "Attacks on Pseudo Random Number

Generators Hiding a Linear Structure," in Topics in

Cryptology, S. D. Galbraith, Ed., vol. 13161, Lecture

Notes in Computer Science, Cham: Springer, 2022, pp.

145–168.

[3] "Class SecureRandom," Java Platform Standard

Edition 8 Documentation. [Online]. Available:

https://docs.oracle.com/javase/8/docs/api/java/security/

SecureRandom.html.

[4] C.-H. Hsieh, X. Yao, Q. Zhang, M. Lv, R. Wang, and

B. Ni, "BCsRNG: A Secure Random Number Generator

Based on Blockchain," IEEE Access, vol. 10, pp.

98117-98126, 2022, doi:

10.1109/ACCESS.2022.3206450.

[5] S. Park, B. G. Choi, T. Kang, K. Park, Y. Kwon, and J.

Kim, "Efficient hardware implementation and analysis

of true random-number generator based on beta

source," ETRI Journal, vol. 42, no. 4, pp. 518-526,

Aug. 2020, doi: 10.4218/etrij.2020-0083.

[6] K. Park, S. Park, B.-G. Choi, et al., "A lightweight true

random number generator using beta radiation for IoT

applications," ETRI Journal, vol. 42, pp. 951–964,

2020, doi: 10.4218/etrij.2020-0119.

[7] R. Li, "A True Random Number Generator algorithm

from digital camera image noise for varying lighting

conditions," in SoutheastCon 2015, Fort Lauderdale,

FL, USA, 2015, pp. 1-8, doi:

10.1109/SECON.2015.7132901.

[8] D. Dobrovolsky, D. Hanzhelo, H. Prokhorov, and D.

Trembach, "Research the Level of Chaotic and

Reliability in Webcam-generated Random Number

Sequences," SISIOT, vol. 2, no. 1, p. 01004, Aug. 2024,

doi: 10.31861/sisiot2024.1.01004.

[9] D. Hanzhelo and H. Prokhorov, "Investigation of

statistical characteristics of numerical random sequence

obtained from a web camera frame," Herald of

Khmelnytskyi National University. Technical Sciences,

vol. 337, no. 3(2), pp. 46-51, 2024, doi:

10.31891/2307-5732-2024-337-3-6.

[10] T. Toffoli and N. Margolis, Cellular Automata

Machines, Cambridge, MA, USA: MIT Press, 1987.

[11] Y. Dong, "Descriptive Statistics and Its Applications,"

Highlights in Science, Engineering and Technology,

vol. 47, pp. 16-23, 2023, doi: 10.54097/hset.v47i.8159.

https://docs.oracle.com/javase/8/docs/api/java/security/SecureRandom.html
https://docs.oracle.com/javase/8/docs/api/java/security/SecureRandom.html

5
Vol 2, No 2, Paper 02010, pp. 1-5 (2024)

SISIOT Journal | journals.chnu.edu.ua/sisiot

Heorhii Prokhorov
He had received a Ph.D. in physics and

mathematics in 2006. Now is a Assistant

Professor of Software Engineering De-

partment, Yuriy Fedkovych Chernivtsi

National University. His research inter-

ests include cryptography, coding the-

ory, hardware random number se-

quences generation.

ORCID ID: 0000-0001-7810-2785

Denys Trembach
Had received BS and MS degrees in In-

formation Security from Evropejs'kij

Universitet Financiv, Ukraine. Now is

studying on a Ph.D. in Computer Sci-

ence, Yuriy Fedkovych Chernivtsi Na-

tional University. He is currently a secu-

rity practitioner, mentor, and part-time

lecturer. His research interests include

cybersecurity, applied AI, chaotic sys-

tems dynamics.

ORCID ID: 0000-0001-8095-4186

Дослідження ефективності обробки числової
випадкової послідовності клітинними автоматами

хаотичного типу

Георгій Прохоров*, Денис Трембач
Кафедра програмного забезпечення комп’ютерних систем, Чернівецький національний університету ім. Юрія Федьковича, Чернівці, Україна

*Автор-кореспондент (Електронна адреса: g.prokhorov@chnu.edu.ua)

АНОТАЦІЯ На сучасному етапі програма, що генерує випадкові числа, ризикує бути зламаною через зростання
обчислювальної потужності сучасних систем. Апаратна генерація базується на стохастичних фізичних явищах, але
забезпечує низьку продуктивність та незадовільні статистичні параметри. У роботі пропонується використовувати
обробку клітинними автоматами для покращення деяких статистичних параметрів послідовностей випадкових чисел,
що згенеровані веб-камерою. У дослідженні наведено результати покращення статистичних характеристик
послідовності чисел, отриманих зі звичайної веб-камери, щодо дотримання однієї з вимог криптостійкості:
рівномірного розподілу елементів за значенням. Раніше було встановлено, що стохастичні процеси, що відбуваються
в матриці веб-камери, викликають хаотичний розподіл значень у згенерованій послідовності випадкових чисел. Цю
проблему можна подолати за допомогою обчислювальної потужності лінійних клітинних автоматів, особливо правил
30, 90, 105. 150. Ці криптопримітиви відомі як хаотичні, які споживають низьку обчислювальну потужність. Успішність
застосування оцінювали у порівнянні з генерацією випадкових чисел програмним методом, зокрема класом
SecureRandom мови програмування Java. Показано, що шляхом вибору кількох ітерацій можна отримати необхідний
рівень рівномірності розподілу елементів послідовності за значенням. Оцінка величини рівномірності розподілу
здійснюється швидко за допомогою статистичної бібліотеки мови програмування Java і може бути реалізована на
звичайному смартфоні, операційній системі Android, без використання громіздких статистичних пакетів. Теоретично
показано, що веб камера високої роздільної здатності може забезпечити продуктивність генерації випадкових чисел
до 2 Гбіт/сек. Результати дослідження можуть бути використані при проектуванні апаратного генератора послідовності
випадкових чисел.

КЛЮЧОВІ СЛОВА програмна інженерія, криптостійкість, клітинні автомати, послідовності випадкових чисел, веб
камера.

This article is licensed under a Creative Commons Attribution 4.0 International License.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://orcid.org/0000-0001-7810-2785
https://orcid.org/0000-0001-8095-4186
http://creativecommons.org/licenses/by/4.0/

