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ABSTRACT This article investigates the use of machine learning methods in navigation and trajectory planning for the 
autonomous control of unmanned systems. The main approaches, such as deep learning and reinforcement learning, are 
considered, offering innovative solutions to challenges arising in dynamic and complex environments. An overview of 
machine learning methods is conducted, highlighting their advantages over traditional algorithms due to flexibility, 
adaptability, and the ability to operate under uncertainty. The application of machine learning in trajectory planning is 
analyzed, including the use of autoencoders, generative models, and graph neural networks for predicting and optimizing 
routes.  Existing problems and challenges are discussed, particularly ensuring safety and reliability, the need for large volumes 
of high-quality data, issues of model interpretability, and regulatory aspects. Prospects for development are identified, 
including the development of more efficient algorithms, enhancing model transparency, and establishing standards for the 
responsible deployment of autonomous systems. In conclusion, it is emphasized that machine learning is a transformative 
force in the field of autonomous navigation and trajectory planning. Overcoming current challenges and continuing 
innovation will unlock the full potential of unmanned systems, bringing significant benefits to society and the economy 
through widespread application across various sectors. 
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I. INTRODUCTION 

he development of unmanned systems has become 

one of the most significant directions in modern 

engineering and technology. Autonomous drones, 

driverless cars, and maritime vessels are already actively 

used in various sectors – from military and industrial 

applications to agriculture and logistics. With the 

increasing complexity of tasks performed by these 

systems, there arises a need for more efficient and adaptive 

methods of navigation and trajectory planning. 
Traditional navigation algorithms often have 

limitations in complex and dynamic environments. 

Machine Learning (ML), particularly its subfields such as 

Deep Learning and Reinforcement Learning, offers new 

approaches to addressing these challenges. The utilization 

of ML enables unmanned systems to learn from 

experience, adapt to new conditions, and make more 

optimal decisions in real time. 

This article explores contemporary machine learning 

methods applied in navigation and trajectory planning for 

autonomous control of unmanned systems. Special 

attention is given to practical implementations and the 

analysis of the effectiveness of these methods in various 

applications. 

The objective of this paper is to investigate and 

synthesize current approaches to using machine learning 

methods in the navigation and trajectory planning of 

unmanned systems, and to identify prospects and 

directions for future research in this field. 

II. AUTONOMOUS CONTROL OF UNMANNED SYSTEMS 
Autonomous control of unmanned systems enables 

vehicles and robots to operate independently using 

advanced sensors, control algorithms, and real-time data 

processing. These systems rely on precise navigation, 

perception, and decision-making mechanisms to execute 

tasks in dynamic environments without human 

intervention. 

Autonomous control of unmanned systems relies on 

several key components [1] to ensure precise operation and 

decision-making. They are shown in Figure 1. 

 
FIG. 1. Key components of autonomous control. 

Perception systems, including LiDAR, radar, cameras, 

and inertial sensors, provide real-time environmental 

awareness. Navigation and trajectory planning utilize 

algorithms to determine optimal routes while avoiding 

obstacles. Control systems, such as proportional-integral-
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derivative (PID) controllers and adaptive control methods, 

regulate movement and stability. Communication 

networks, including satellite links and vehicle-to-vehicle 

(V2V) communication, enable data exchange and 

coordination. Finally, decision-making algorithms, based 

on rule-based logic and sensor fusion, allow autonomous 

systems to react dynamically to changing conditions, 

ensuring safe and efficient operation. 

Among all components, navigation and trajectory 

planning plays a crucial role in ensuring safe and efficient 

movement in dynamic environments. The use of machine 

learning significantly enhances these processes by 

improving environmental perception, enabling rapid 

adaptation to unforeseen changes, and optimizing routes in 

real time. 

III. OVERVIEW OF MACHINE LEARNING METHODS IN 
AUTONOMOUS NAVIGATION 

Machine learning has become a cornerstone in the 

advancement of autonomous navigation systems for 

unmanned vehicles, including drones, self-driving cars, 

and maritime vessels. By leveraging machine learning, 

these systems can learn from experience, adapt to changing 

environmental conditions, and make optimal decisions in 

real time [2]. This capability is crucial for navigating 

complex and unpredictable environments where traditional 

rule-based systems may fall short. The machine learning 

model types are shown in Figure 2. 

 
FIG. 2. Machine learning model types [3].  

One of the foundational methods is supervised learning, 

where models are trained on labeled datasets. In the context 

of autonomous navigation, supervised learning is 

extensively used for object detection and recognition tasks. 

For instance, convolutional neural networks (CNNs) are 

employed to process visual inputs from cameras to identify 

and classify objects such as traffic signs, pedestrians, other 

vehicles, and obstacles [4]. 

CNNs effectively extract hierarchical features from 

images and videos, enabling the system to make informed 

decisions based on visual cues. 

 
FIG. 3. CNN process [4].  

Unsupervised learning methods are utilized to discover 

hidden patterns and structures in data without prior 

labeling [5]. In autonomous navigation, unsupervised 

learning is valuable for processing sensory information and 

constructing environmental maps. This approach allows 

unmanned vehicles to independently identify significant 

features of their surroundings. 

Techniques like clustering and dimensionality 

reduction help in organizing sensory data from LiDAR, 

radar, and ultrasonic sensors, facilitating tasks such as 

simultaneous localization and mapping (SLAM) without 

the need for pre-existing maps [6]. 

Particular attention is drawn to reinforcement learning 

(RL), where an agent learns optimal behaviors through 

interactions with the environment and receives rewards for 

certain actions (Figure 4). This method enables systems to 

learn complex policies for decision-making tasks, such as 

avoiding obstacles, navigating dynamic environments, and 

planning efficient trajectories [7]. 

 
FIG. 4. Reinforcement learning concept [8].  

The integration of deep neural networks with 

reinforcement learning, known as Deep Reinforcement 

Learning (DRL), allows for solving high-dimensional and 

continuous control problems [9]. DRL algorithms like 

Deep Q-Networks (DQNs) [10] and Proximal Policy 

Optimization (PPO) [11] enable agents to learn directly 

from raw sensory inputs, making them suitable for real-

world navigation challenges. 

Traditional navigation algorithms, such as shortest path 

search algorithms (e.g., Dijkstra's algorithm or A* 

algorithm) [12-14], have limitations in conditions of 

unpredictable changes and incomplete information. They 

often require accurate environmental models and cannot 

adapt to new situations without recalculation. These 

algorithms may struggle with dynamic obstacles or 

changes in terrain, leading to inefficiencies or failures in 

navigation. In contrast, machine learning methods provide 

greater flexibility and robustness, enabling systems to 

handle uncertainty and operate effectively in partially 

known or rapidly changing environments [15]. 

However, the use of machine learning in navigation is 

accompanied by certain challenges. The necessity for large 

volumes of high-quality data for training can be 

problematic, especially in specific or rare scenarios such as 

extreme weather conditions or unusual terrains. Collecting 

and annotating this data can be time-consuming and costly. 

Additionally, there are concerns regarding the safety and 

reliability of such systems, as navigation errors can have 

serious consequences, including accidents or mission 

failures [16]. The complexity of deep neural networks also 

complicates the interpretation of their decisions, which can 

be critical in the context of accountability and trust in 

unmanned systems. This "black box" nature of deep 

learning models raises issues in debugging and verifying 

the system's behavior under different conditions. 

Moreover, machine learning models can be vulnerable 
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to adversarial attacks or unexpected inputs that were not 

represented in the training data, leading to unpredictable 

behavior. Ensuring the robustness and security of these 

systems is an ongoing area of research. There is also a need 

for standardization and regulatory frameworks to govern 

the deployment of machine learning-based navigation 

systems, ensuring they meet safety standards and ethical 

considerations. 

Despite these challenges, progress in the field of 

machine learning opens new possibilities for improving 

autonomous navigation. Advances in computational 

power, such as the use of GPUs and specialized AI 

hardware, facilitate the training and deployment of more 

complex models. Techniques like transfer learning and 

data augmentation help mitigate the data scarcity problem 

by leveraging existing models and expanding available 

datasets. Research into explainable AI (XAI) aims to make 

machine learning models more interpretable, enhancing 

trust and transparency [17]. 

The continuous development of algorithms and 

methodologies contributes to the creation of smarter and 

more adaptive unmanned systems. Hybrid approaches that 

combine machine learning with traditional algorithms can 

capitalize on the strengths of both, leading to more reliable 

and efficient navigation solutions [18]. As a result, 

autonomous systems are becoming increasingly capable of 

effectively performing complex tasks in diverse real-world 

environments, from urban settings with dense traffic to 

remote areas with challenging terrains. 

The future of autonomous navigation lies in the synergy 

between advanced machine learning techniques and robust 

system design. By addressing current limitations and 

continuing to innovate, we move closer to realizing fully 

autonomous unmanned systems that are safe, efficient, and 

trustworthy, with wide-ranging applications across 

industries. 

IV. TRAJECTORY PLANNING USING MACHINE LEARNING 
Trajectory planning is a crucial component in ensuring 

the autonomy of unmanned systems. It involves 

determining the optimal path from a starting point to a 

destination while considering environmental constraints 

and the characteristics of the vehicle. Traditional planning 

methods often rely on static algorithms and known 

environmental models, which may be insufficient in 

dynamic or unknown conditions [19]. The application of 

machine learning methods addresses these issues by 

providing flexibility and adaptability in trajectory 

planning. 

Deep learning is utilized to process large volumes of 

data and detect complex patterns, which is essential when 

planning in complex environments. For instance, 

autoencoders and generative models are used to learn 

representations of the environment and predict possible 

paths, allowing unmanned systems to evaluate various 

scenarios and choose the optimal route [20]. Graph Neural 

Networks (GNNs) enable modeling the environment as a 

graph, where nodes represent positions and edges represent 

possible transitions, thus learning optimal paths in complex 

topologies [21]. The GNN model blueprint is shown in 

Figure 5. 

 
FIG. 5. GNN model [22].  

Deep Reinforcement Learning is an effective approach 

for action planning in dynamic and unknown 

environments. It allows agents to learn trajectory planning 

policies based on experience, processing high-dimensional 

input data such as images or three-dimensional maps. 

Policy and value-based algorithms like A3C 

(Asynchronous Advantage Actor-Critic) [23] and DDPG 

(Deep Deterministic Policy Gradient) [24] are used to learn 

continuous actions in real-time. 

Route optimization involves not only avoiding 

obstacles but also considering other factors such as energy 

consumption, time, and safety. ML models can consider 

multiple objective functions simultaneously, balancing 

different criteria through multi-objective optimization 

[25].  

Examples of implementing these methods in unmanned 

systems include autonomous vehicles that use ML for 

trajectory planning by considering road conditions, traffic, 

and traffic regulations. Companies like Tesla and Waymo 

are actively integrating deep learning into their autopilot 

systems [26]. Drones apply ML for navigation in complex 

environments such as urban areas or forests, where they 

need to avoid obstacles and optimize routes to conserve 

energy [27]. 

Future research is focused on developing more efficient 

and interpretable models, as well as integrating ML 

methods with traditional planning algorithms to achieve 

better performance and reliability. 

V. ANALYSIS OF EXISTING METHODS AND THEIR 
LIMITATIONS 

Modern machine learning methods for autonomous 

navigation and trajectory planning demonstrate significant 

progress, yet their practical implementation faces systemic 

limitations. Based on the literature review, we outline key 

advantages, drawbacks, and research gaps. 

A. Deep Learning. Deep learning models, such as 

convolutional neural networks and transformers, excel in 

processing multimodal sensor data (e.g., LiDAR, cameras) 

for obstacle detection and environmental mapping [3, 18]. 

Their hierarchical feature extraction enables robust 

performance in complex scenarios, such as urban 

navigation. However, these models are highly dependent 

on the quality and diversity of training data. For instance, 

systems trained in simulated environments like CARLA 

often underperform in real-world conditions due to domain 

gaps, such as lighting variations or sensor noise [28]. 

Computational demands further limit their deployment on 

resource-constrained platforms, necessitating optimization 

techniques like network pruning and quantization [29, 30]. 

Autonomous vehicles, such as those developed by Tesla, 

demonstrate high accuracy in structured environments but 
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struggle in extreme weather or unstructured terrains, 

highlighting the fragility of purely data-driven approaches 

[15]. 

B. Reinforcement Learning: Adaptability vs. Safety. 
Reinforcement learning, particularly deep RL, offers 

adaptability in dynamic environments by learning policies 

through reward mechanisms. Algorithms like Deep 

Deterministic Policy Gradient and Proximal Policy 

Optimization enable agents to navigate without explicit 

environment models [9, 19]. Despite these advantages, 

DRL requires extensive training iterations, making real-

time deployment challenging. Safety concerns also arise, 

as agents may exploit reward function flaws – for example, 

circumventing obstacles indefinitely to maximize rewards 

[27]. A case study on drone navigation revealed that DRL 

agents successfully avoided static obstacles but failed to 

adapt to sudden wind gusts due to insufficient training data 

diversity [26]. 

C. Unresolved Challenges and Recommendations. Three 

major gaps hinder the widespread adoption of ML in 

autonomous systems. First, the lack of standardized testing 

frameworks complicates cross-method comparisons, as 

most experiments rely on custom simulations [18]. Second, 

the "black-box" nature of ML models, especially DRL, 

undermines trust in safety-critical applications. While 

explainable AI tools like LIME and SHAP provide partial 

insights, they fail to fully decode complex decision-making 

processes [29]. Third, ethical and regulatory frameworks 

for ML-driven failures remain underdeveloped, raising 

accountability concerns [15]. 

To address these challenges, we propose three 

strategies. First, integrating DRL with online planners like 

RRT* could enhance responsiveness to dynamic obstacles 

[12]. Second, deploying quantized neural networks and 

transfer learning would reduce computational overhead for 

embedded systems [30, 31]. Third, hybrid architectures 

that activate traditional algorithms during ML failures 

could improve safety [14]. Advancing XAI tools and 

establishing ethical guidelines are equally critical to 

fostering trust and reliability. 

VI. CONCLUSION 
The integration of machine learning methods into 

navigation and trajectory planning has significantly 

advanced the capabilities of autonomous unmanned 

systems. Throughout this article, the exploration of how 

machine learning, particularly deep learning and 

reinforcement learning, offers innovative solutions to the 

challenges faced in dynamic and complex environments 

has been conducted. 

In the overview of machine learning methods in 

autonomous navigation, it is highlighted how supervised 

learning aids in object detection and recognition, 

unsupervised learning helps in environmental mapping, 

and reinforcement learning enables systems to make 

optimal decisions through interactions with their 

surroundings. These methods surpass traditional 

algorithms by providing greater flexibility, adaptability, 

and the ability to handle uncertainty. 

Trajectory planning using machine learning has been 

shown to enhance the autonomy of unmanned systems. By 

employing deep learning models such as autoencoders, 

generative models, and graph neural networks, systems can 

predict and optimize paths in intricate environments. 

Reinforcement learning further allows for real-time 

adaptation to changes and obstacle avoidance, improving 

efficiency and safety. 

Practical applications across various industries 

demonstrate the tangible benefits of these advancements. 

Autonomous vehicles now navigate urban environments 

with increased safety and efficiency, drones perform 

complex tasks in challenging terrains, and robots optimize 

operations in industrial settings. These successes 

underscore the potential of machine learning to 

revolutionize navigation and trajectory planning. 

However, challenges remain in ensuring safety, 

reliability, and ethical compliance. The need for large 

amounts of high-quality data, model interpretability, 

computational constraints, and regulatory considerations 

are significant hurdles that must be addressed. Ongoing 

research and development aim to create more efficient 

algorithms, improve model transparency, and establish 

standards for the responsible deployment of autonomous 

systems. 

Machine learning has emerged as a transformative 

force in the field of autonomous navigation and trajectory 

planning. By overcoming current challenges and 

continuing to innovate, the full potential of unmanned 

systems can be unlocked. This progress promises not only 

to enhance operational efficiency and safety but also to 

bring substantial benefits to society and the economy 

through widespread adoption in various sectors. 
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Аналіз методів машинного навчання у навігації та 
плануванні траєкторій для автономного керування 

безпілотними системами 
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*Автор-кореспондент (Електронна адреса: r.s.trembovetskyi.asp24@chdtu.edu.ua) 

АНОТАЦІЯ У цій статті досліджується застосування методів машинного навчання у навігації та плануванні траєкторій 
для автономного керування безпілотними системами. Розглядаються основні підходи, такі як глибинне навчання та 
навчання з підкріпленням, які пропонують інноваційні рішення для викликів, що виникають у динамічних та складних 
середовищах. Проведено огляд методів машинного навчання, підкреслюючи їхні переваги над традиційними 
алгоритмами завдяки гнучкості, адаптивності та здатності працювати в умовах невизначеності. Проаналізовано 
застосування машинного навчання у плануванні траєкторій, включаючи використання автоенкодерів, генеративних 
моделей та графових нейронних мереж для прогнозування та оптимізації маршрутів. Обговорюються наявні проблеми 
та виклики, зокрема забезпечення безпеки та надійності, необхідність у великих обсягах високоякісних даних, питання 
інтерпретованості моделей та регуляторні аспекти. Визначено перспективи розвитку, такі як розробка ефективніших 
алгоритмів, підвищення прозорості моделей та встановлення стандартів для відповідального впровадження 
автономних систем. У підсумку наголошується, що машинне навчання є рушійною силою змін у сфері автономної 
навігації та планування траєкторій. Подолання поточних викликів і подальші інновації розкриють повний потенціал 
безпілотних систем, приносячи значні переваги суспільству та економіці через їх широке застосування в різних галузях. 

КЛЮЧОВІ СЛОВА машинне навчання, автономна навігація, планування траєкторій, безпілотні системи, глибинне 
навчання. 
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