Security
of Infocommunication Systems
and Internet of Things

2024 Vol 2, No 2

https://doi.org/10.31861/sisiot2024.2.02007

Received 04 December 2024; revised 17 December 2024; accepted 22 December 2024; published 30 December 2024

Scanning of Three-Dimensional Objects by
Photogrammetry Methods Using LiDAR and Mobile
Computing

Bohdan Romaniuk! and Yuliya Tanasyuk®"

1Computer Systems and Networks Department, Yuriy Fedkovych Chernivtsi National University, Chernivtsi, Ukraine
*Corresponding author (E-mail: y.tanasyuk@chnu.edu.ua)

ABSTRACT Three-dimensional models of objects are widely used in various fields, including science, construction, healthcare,
and entertainment, making the task of creating such models highly relevant. The primary goal of this paper is to develop a
mobile application which uses photogrammetry methods for capturing real-world three-dimensional objects or
environments. The main advantage of photogrammetry is low hardware requirements with relatively high accuracy of the
models obtained. Additionally, the application utilizes smartphone’s LiDAR sensor to enhance capture quality, especially for
low-textured objects. The LiDAR sensor allows for precise distance measurement between the device and the object, which
is crucial for accurately capturing the object’s size and position. To build 3D model of the object from a series of images, the
application uses Object Capture API, available on iOS, iPadOS, and macOS operating systems. This API fully leverages the
build-in GPU and Neural Processing Unit to build and tessellate the point cloud and generate the polygonal mesh model. The
application was developed for iPhones that support LiDAR sensor, using Swift programming language, SwiftUl for the user
interface, and RealityKit for Object Capture API. The app features three modes: object capturing, model reconstruction and
model preview. To simplify the process of capturing the object, the app can automatically take photos of the object, provide
the user with guidance and recommendations on optimal lighting conditions, camera positioning, and a preview of the point
cloud. Once object capture is complete, the application transitions to the reconstruction mode, which uses captured photos
and point cloud data. This process involves image alignment, detailed point cloud generation, polygonal mesh model
generation, texture and normal map generation, and model optimization. After reconstruction, the user can obtain model in
the USDZ file format and preview it using built-in system tools. Following these steps, two test models of a drum and a garden
statue were built with satisfactory quality and accuracy, while maintaining the original size of the scanned objects. The

resulting three-dimensional polygonal models can be successfully exported to various 3D editors and programs.

KEYWORDS photogrammetry, object capture, mobile device, swift, 3D models.

I. INTRODUCTION
he rapid development of computer graphics and
T computing power of GPUs (Graphics Processing
Unit) enables the creation of photorealistic virtual
environments, which can be wused for scientific,
constructional, cultural, educational, and entertainment
purposes. For example, architects and builders use 3D
models of buildings and structures, while CGI (Computer-
Generated Imagery) artists create photorealistic 3D models
of humans for movies and games.
There are two main methods to obtain 3D model from
a physical object. The first one, called photogrammetry (or
stereophotogrammetry), uses set of photographs of an
object to determine the shape, size and position of the
object’s points in space by measuring and analyzing these
images [1-2]. The primary advantage of this method is its
simplicity and low hardware requirements. Because of this,
photogrammetry can use images from any camera, such as
smartphone, DSLR (Digital Single-Lens Reflex), or a
drone. However, in certain scenarios, like when dealing
with transparent or low-textured objects, the quality of the
photogrammetry output can deteriorate significantly.
The second method involves LiDAR (Light Detection
and Ranging) scanners, which determine distances by

targeting an object with a laser and measuring the time it
takes for the reflected light to return to the receiver. LIDAR
provides high accuracy and copes well with complex
objects [3]. However, industrial-grade LiDAR scanners
often come at a high cost.

In addition to enhancements in computer graphics and
GPU computing power, mobile devices have also
experienced substantial development. Modern
smartphones are equipped with camera systems that can
capture high-quality images suitable for photogrammetry.
Moreover, some of the latest iPhones and iPads come with
LiDAR scanner and possess enough computing power to
improve the quality of the photogrammetry results and
perform on-device reconstructions.

There are many software solutions on the market for
creating three-dimensional models using photogrammetry
methods from different vendors. Among them are Polycam
and 3DF Zephyr by 3Dflow.

Polycam [4] is a mobile application that allows users to
capture photos to create different types of 3D assets,
namely three-dimensional models using photogrammetry,
gaussian splatting, rooms scanner, and 360 image creator.
The application supports automatic image capturing using
smartphone, and once completed, the images are sent to the

p-ISSN 2786-8443, e-ISSN 2786-8451, 02007(7) | Yuriy Fedkovych Chernivtsi National University | www.chnu.edu.ua

SISIOT Journal | journals.chnu.edu.ua/sisiot

cloud to create three-dimensional mesh model or gaussian
splat, at a user’s choice. When the processing is complete,
a user can view the model in the application or export it in
GLB file format. The other formats require a subscription.
Also, a user can create up to 5 photogrammetric or gaussian
splat captures using up to 100 images per capture for free,
while subscription ensures unlimited number of captures
with up to 2000 images for photogrammetric captures and
up to 1000 images for gaussian splat captures.

Another great example of photogrammetry software is
3DF Zephyr by 3Dflow [5]. 3DF Zephyr is a commercial
photogrammetry and 3D modelling software. It is a
desktop Windows application, but user can import photos
from any camera, e.g. smartphone’s camera, DSLR, or
drone’s camera. The application also can utilize video
cards to speed up reconstruction process, but only Nvidia
GPUs that use CUDA are supported. Otherwise, the
application will use only CPU cores. Like Polycam, 3DF
Zephyr comes both in free and paid versions. The free one
is limited to only 50 images per capture, supports a single
Nvidia GPU, and imposes editing and exporting
restrictions. The full version of 3DF Zephyr, available as a
monthly subscription or one-time payment, allows one to
capture an unlimited number of images, restricted only by
the available system RAM, and utilize multiple Nvidia
GPUs.

Considering the software features outlined above, the
primary goal of this paper is the development of a mobile
iOS application designed for scanning three-dimensional
objects using photogrammetry methods and a smartphone,
equipped with a camera and LiDAR sensor. This
combination allows for high-performance object capture
and 3D model reconstruction entirely on a mobile device.
The relevance of the research is emphasized by the fact that
resulted 3D models can be used across various fields, such
as virtual reality, gaming, product design, cultural heritage
preservation, and e-commerce.

Since the application uses smartphone as the main
capturing and processing device, it allows users to take
pictures, view, and export three-dimensional models for
free without an Internet connection and cloud services.
Considering these advantages, the developed application
can be compared with alternative software solutions using
Table 1.

TABLE 1. Photogrammetry applications comparison.

1. PRINCIPLES OF SCANNING THREE-DIMENSIONAL
OBJECTS USING PHOTOGRAMMETRY METHODS

Photogrammetry is a technique that allows one to
reconstruct three-dimensional objects from two-
dimensional images by analyzing and interpreting spatial
relationships between these images. This technique relies
on image overlap, which is essential for achieving accurate
and reliable 3D reconstruction by identifying key points.
Thus, the photogrammetry methods require a large set of
images of the same object, captured from different angles
(Fig. 1). After capturing the images, software identifies key
points (for example, object boundaries or texture
highlights) using obtained images (e.g., I1, I2, I3). By means
of these identified key points from each image (as, b1, and
C1; az, bz, and cy; a3, bs, and c3), the system can combine
them into real 3D points. Since each key point of aibicy
correlates with agh,c, and asbscs, the system can match
them accordingly. Therefore, by knowing the position and
orientation of the cameras (P1, P2, and P3) at the time of
capturing, the software can determine the geometric
coordinates of the ABC points of the object as intersections
of the corresponding lines [2].

However, one should take into account that using only
photographic images from the camera can lead to
inaccuracies in identifying key points, especially when
scanning low-textured objects. In such cases, it can be
challenging to identify key points due to the lack of distinct
surface features. To address this issue, application uses the
device’s LiDAR scanner to capture additional metadata,
such as depth information, which can enhance the accuracy
of the 3D reconstruction during the processing stage [3].

The application workflow is divided into several stages,
each executed sequentially as follows:

Stage 0. The user points the smartphone at the object
that to be scanned.

Stage 1. The user presses the capture button, prompting
a bounding box to appear around the object (Fig. 2).

The user can manually adjust the size of the bounding
box or reset it. If necessary, the user can also cancel the
operation, returning to Stage 0.

Stage 2. The user presses the capture button again to
begin the scanning process. To complete this stage, the user
needs to move around the object, keeping it in the frame.

Application Developed app Polycam 3DF Zephyr
Platform Mobile Mobile + Cloud Desktop
Operating System iOS iOS and Android Windows
Hardware iPhone or iPad iOS or Android smartphone with ~ PC with at least dual core CPU, 16 GB
requirements with LiDAR camera and at least 3.5 GB RAM RAM, and 10 GB storage. For GPU —
sensor Nvidia video card with at least 1GB of
VRAM and DirectX 9.0c support
Maximum 200 100 for free tier 50 for free version
number of images 2000 for Pro and higher tiers Unlimited for full version
Export formats usbz GLB for free version OBJ, STL, and PLY
USDZ, STL, OBJ, DAE, FBX,
and others for Pro and higher tiers
Licensing Free Free with limitations Free with limitations

Monthly or annual subscriptions

Monthly subscription
One-time purchase

Vol 2, No 2, Paper 02007, pp. 1-7 (2024)

SISIOT Journal | journals.chnu.edu.ua/sisiot

FIG. 1. Obtaining the key points of the object from images 1, I,
and I3 taken by cameras P1, P2, and Ps.

FIG. 2. Example of bounding box that appears for captured object.

Although the system will automatically take photos, the
user can also manually capture images if needed.
Additionally, the user can monitor the number of photos
taken.

Step 3. After the initial scan, the user is prompted to
perform up to two additional scans, which may involve
repositioning the object or capturing it from different
heights. If the user chooses to continue, the app returns to
Stage 2 for each additional scan. Otherwise, the app
transitions to Stage 4.

Stage 4. Once the object capture is complete, the
reconstruction process begins. This step utilizes the
device’s built-in GPU and NPU (Neural Processing Unit)
to accelerate the reconstruction through parallel
computing. The system aligns the images and generates a
point cloud of the model, using the collected data (i.e.
photos, depth maps, LiDAR data, and other metadata). The
point cloud is then tessellated, with textures and normal
maps generated, followed by model optimization to ensure
smooth performance on mobile devices.

Stage 5. The final stage involves saving the created 3D
model. The model is stored in the USDZ file format,
allowing the user to preview it in 3D or augmented reality
(AR) modes using system tools. The file can also be
imported into various 3D applications and editors.

An UML activity diagram (Fig. 3) effectively
represents the workflow of the object capture process,
clearly displaying user actions and system responses.

Vol 2, No 2, Paper 02007, pp. 1-7 (2024)

Object Capture I

i [Point Camera at the Object] | Move to Fless Capture Button]
3D Object 5
ready statel

Move to
capturing
state

[Cancel Operation]

Move to
detecting
state

[Press Caplure Button]

[Adjust BBox]

=
Size
W

Rotation

[Not enough]

[Enough] Number
of scan

passes,

Number of [Enough]

Images

[Not enough]

Move to
reconstruction
state

Take an
image of
object

3D Model

[Present model]

USDZ File

FIG. 3. UML activity diagram for object capture process.

[Cancel Operation]

Move to restart
state

Clear data

A
Save model in
USDZ File
Format

11l. SOFTWARE IMPLEMENTATION OF THE 10S
APPLICATION TO SCAN AND RECONTRUCT THREE-
DIMENSIONAL OBJECTS

The i0S application was developed using the Swift
programming language, which was created and introduced
by Apple in 2014. Swift is a high-level general-purpose
programming language that compiles into machine code
using LLVM-based compiler [6-7]. LLVM is a set of
compiler and toolchains that can be used to develop both
frontend for any language and backend for any ISA
(instruction set architecture) [8].

The user interface was designed and implemented with
the SwiftUl framework, which is used to develop
applications for iOS, iPadOS, macOS and other Apple
operating systems. SwiftUl allows developers to build user
interfaces in declarative way, using pure Swift code
without requiring markup languages [9]. For example, Fig.
4 shows a simple SwiftUl View containing text and a
button. Due to SwiftUI’s reactive nature, the Text View
automatically updates when the user presses the button and
the count value changes.

import SwiftUI

struct ContentView: View {
@State private var count: Int = @ ese

var body: some View {
VStack {

Text("Hello, SwiftuI!") iy
Button {

count += 1
} label: {

Text("Counter: \(count)")
}
.buttonStyle(.borderedProminent)
}
.padding()
}
}

FIG. 4. Basic example of SwiftUl View that contains Text and
Button Views.

SISIOT Journal | journals.chnu.edu.ua/sisiot

For object capturing and model reconstruction, the
application uses Object Capture API, a component of the
RealityKit framework. RealityKit provides high-
performance 3D simulation and rendering capabilities by
utilizing the device’s built-in GPU [10]. When using the
Object Capture API, the framework can leverage the Apple
Neural Engine (Apple’s proprietary neural processing unit)
to significantly accelerate compute vision algorithms,
which are essential for recognizing key points of the object
in the captured images [11-12].

IV. REVIEW OF THE RESULTS OF THE DEVELOPED
MOBILE APPLICATION

Using the developed mobile application, several three-
dimensional models of real-world objects were generated
through photogrammetry and on-device reconstruction. All
capturing and rendering processes were conducted on a
device powered by Apple A17 Pro chipset, featuring 6-core
CPU (4 efficiency cores and 2 performance cores), 6-core
GPU, 16-core NPU, and 8 GB of LPDDR5 RAM. The
device's main camera was equipped with a 48 MP sensor,
1.22 pm pixel size, and an {/1.78 aperture. Additionally,
the device was equipped with a LiDAR sensor, enhancing
depth perception, improving object reconstruction
accuracy, and facilitating low-textured objects capturing.
Both objects under investigation were captured outdoors
under diffuse lighting in cloudy weather, ensuring uniform
illumination. Blender was used to render the resulting
models, as well as to extract textures and normal maps [13].

The first three-dimensional model of a drum (Fig. 5)
was generated from 109 images taken at various angles
around the object. The capture process was divided into
three stages, each of which took approximately 1-2
minutes, with the drum repositioned between stages to
ensure full-angle coverage. The reconstruction process
then took around 5-6 minutes. The resulting mesh was
saved in the USDZ file format, consisting of 14 258
vertices and 25 000 faces, with a final size of 10.4 MB.
Additionally, a 2K (2048 x 2048px) texture and a normal
map (Fig. 6) were generated and embedded in the final file.

FIG. 5. The 3D model of the drum generated with the developed
mobile application.

Vol 2, No 2, Paper 02007, pp. 1-7 (2024)

FIG. 6. Generated 2K texture (a) and normal map (b) for the drum
model (Fig. 5).

To evaluate the performance of the developed
application, we compared it with Polycam and 3DF Zephyr
using images obtained with the presented software during
capturing process. However, since drum was flipped
several times, both Polycam and 3DF Zephyr accepted
only limited sets of taken images from the first scan.
Furthermore, 3DF Zephyr only created a texture, while
Polycam and the developed application created both a
texture and a normal map. The detailed comparison
between the developed app and its alternatives is presented
in Table 2.

TABLE 2. Drum model reconstruction comparison.

Developed

Application app Polycam 3DF Zephyr
Number of 109 40 40

images

Number of 14 258 18 442 5266
vertices

Number of 25000 32222 10 324
faces

Texture 2048px 4096px 6704px
Normal 2048px 4096px N/A
map

File format USDZ GLB OBJ/MTL
File size 10.4 MB 4.1 MB 4.4 MB

The second three-dimensional model created was a
garden figure (Fig. 7), generated from 91 images taken at
various angles around the object. Similar to the drum
model reconstruction, the capture process was divided into
three stages, each lasting approximately 1-2 minutes.
However, unlike the drum, the garden figure was difficult
to reposition. To achieve full-angle coverage, the
additional pictures were taken with the device positioned
at varying polar angles — one at a higher angle and another
one at a lower angle. The reconstruction process also took
approximately 5-6 minutes. The resulting mesh, saved in
the USDZ file format, contains 14 417 vertices and 25 000
faces, and its final size is 10.6 MB. Similar to the drum
model, a 2K (2048 x 2048px) texture and a normal map
(Fig. 8) were generated and embedded in the final file.

The evaluation of the garden statue model
reconstructed from the images captured with the developed
application has been performed. In this case study,
Polycam accepted all 91 images, since the real-world
object wasn’t moved, and all images were taken by
changing the position relative to the object. However, 3DF
Zephyr took only 50 images due to free version limitations.

SISIOT Journal | journals.chnu.edu.ua/sisiot

a) b)
FIG. 8. Generated 2K texture (a) and (b) for the garden figure
model (Fig. 7).
The detailed comparison between the developed app
and alternative applications is given in Table 3.
TABLE 3. Garden statue model reconstruction comparison.

Developed

Application app Polycam 3DF Zephyr
Number of 91 91 50

images

Number of 14 417 30 244 12 756
vertices

Number of 25000 49 999 25179
faces

Texture 2048px 4096px 6704px
Normal 2048px 4096px N/A
map

File format USDZ GLB OBJ/MTL
File size 10.6 MB 6.4 MB 7.7 MB

On balance, two 3D models presented proved to be of
good quality and compatible with the considered
commercial software products. However, it is worth
noting, that the models produced by both Polycam and 3DF
Zephyr are not watertight and include the elements of their
surrounding environment as a part of the model geometry.
This may require additional processing depending on the
use case. In addition, through the use of LiDAR, the results

Vol 2, No 2, Paper 02007, pp. 1-7 (2024)

obtained with the developed application retain accurate
dimensions, without the need to use reference values. For
example, the actual dimensions of the drum are 204 mm in
height, 139 mm in top diameter, and 92 mm in bottom
diameter. According to Blender, these dimensions mostly
coincide with those of the output 3D model, namely:
202 mm in height, 138 mm in top diameter, and 92 mm in
bottom diameter (Fig. 9).

©.202088 m

FIG. 9. Dimensions of the generated model of the drum, defined
in Blender.

The same applies to the garden statue, which has a
height of 390 mm and a diameter width of 300 mm.
According to Blender, the height of the model obtained is
383 mm, and the diameter width is 292 mm (Fig. 10).

FIG. 10. Dimensions of the generated model of the garden statue,
defined in Blender

SISIOT Journal | journals.chnu.edu.ua/sisiot

V. CONCLUSION

The iOS mobile application has been developed to scan
and reconstruct 3D models of objects using
photogrammetry methods, built-in device’s camera,
LiDAR sensors, NPU, and GPU.

The i0S mobile application was developed using the
Swift programming language, the SwiftUl framework for
Ul and the RealityKit framework, which includes the
Object Capture API. This API generates 3D object models
using photogrammetry methods and enables real-time
capturing with mobile devices equipped with a LiDAR
sensor to enhance model quality, even in complex cases,
such as low-textured models or poor lightning conditions.
Available in recent versions of i0S, iPadOS, and macOS,
the API leverages the device's GPU and NPU to
significantly improve efficiency and reduce processing
time.

The 3D models created with the developed mobile
application possess satisfactory quality and accuracy,
while maintaining the original dimensions of the scanned
objects. Each model is proved to be manifold, ensuring
continuous, gap-free surface ideal for simulations, 3D
printing, and further processing. Moreover, the resulting
3D models can be successfully exported to the widely used
visualization environments and, thanks to the presence of
textures and normal maps, are well-suited for high-quality
renders.

AUTHOR CONTRIBUTIONS
B.R. — conceptualization, software development,
original draft preparation, visualization; Y.T. — draft
review and editing, supervision.

COMPETING INTERESTS
The authors declare no conflict of interest.

REFERENCES

[1] Nvidia, "What Is Photogrammetry?" [Online]. Available:
https://blogs.nvidia.com/blog/what-is-photogrammetry.

[2] T.Luhmann, S. Robson, S. Kyle, and J. Boehm, Close-
Range Photogrammetry and 3D Imaging, 4th ed. Berlin,
Germany: De Gruyter, 2023.

[31 "The Basics of LiDAR — Light Detection and Ranging —
Remote Sensing,” [Online]. Available:
https://www.neonscience.org/resources/learning-
hub/tutorials/lidar-basics.

[4] Polycam, "3D Scanner, LiDAR, 360," [Online]. Available:
https://poly.cam.

[5] 3Dflow, "3DF Zephyr — the photogrammetry software

(6]
(7]
(8]
(9]

[10]

[11]

[12]

[13]

solution,"” [Online]. Available:
https://www.3dflow.net/3df-zephyr-photogrammetry-
software/.

The Swift Project, "Swift Language Documentation,”
[Online]. Available: https://www.swift.org/documentation.
Apple Inc., The Swift Programming Language, Swift 5.7
ed. Apple Inc., 2022.

The LLVM Project, "Overview and Documentation,"
[Online]. Available: https://www.llvm.org.

Apple Inc., "SwiftUl Framework Documentation,”
[Online]. Available:
https://developer.apple.com/documentation/SwiftUl.
Apple Inc., "RealityKit Framework Documentation,"
[Online]. Available:
https://developer.apple.com/documentation/realitykit.
Apple Inc., "Object Capture APl Documentation,"
[Online]. Available:
https://developer.apple.com/documentation/realitykit/realit
ykit-object-capture.

E. Hollemans, "The Neural Engine — what do we know
about it?" [Online]. Available:
https://github.com/hollance/neural-engine.

Blender Foundation, "Blender — a 3D modelling and
rendering software," [Online]. Available:
https://www.blender.org.

Bohdan Romaniuk

In 2023, graduated from Yuriy
Fedkovych Chernivtsi National
University with a degree in “Computer
Engineering” (bachelor’s level).
Currently studying at the Chernivtsi
National ~ University, majoring in
“Computer Engineering of Internet of
Things and Cyber-Physical Systems
Technologies” (master’s level).
Research interests are as follows:
software engineering, embedded
programming, computer graphics.

Yuliya Tanasyuk

PhD, Associate Professor at the
Department of Computer Systems and
Networks of Physical, Technical and
Computer Sciences Institute, Yuriy
Fedkovych Chernivtsi National
University, Ukraine. Research interests
and academic activities are as follows:
programming, network information
technologies, cybersecurity, loT,
software engineering.

ORCID ID: 0000-0001-8650-0521

CKaHyBaHHA TPMBUMiIPHUX 06'eKTiB meTogamm
dotorpammerpii 3 BuKkopucraHHam LiDAR Tta mobinbHux
obuucneHb

BorgaH PomaHiok?, Onia TaHaciokY”

Kadeapa Komn'IOTEPHUX CUCTEM Ta Mepex, YepHiBeLbKMi HalioHabHUIA yHiBepcuTeT imeHi lOpia ®eabkosuya, YepHisu,, YKpaiHa

*ABTOp-KOpecnoHaeHT (EnekTpoHHa agpeca: y.tanasyuk@chnu.edu.ua)

AHOTALLIA TpuBumipHi Moaeni 06'eKTIB LUIMPOKO BUKOPUCTOBYIOTLCA B Pi3HUX cdepax, Y TOMY YncAi B HayLi, ByAiBHUUTBI,
MeAMUMHI Ta iHAYCTpii po3Bar, Wo pobuTb 3aBAAHHA CTBOPEHHA TaKUX MOZEeNEeN Ay¥Ke akTyasibHUM. OCHOBHOM METOHO L€l

Vol 2, No 2, Paper 02007, pp. 1-7 (2024)

6

https://blogs.nvidia.com/blog/what-is-photogrammetry
https://www.neonscience.org/resources/learning-hub/tutorials/lidar-basics
https://www.neonscience.org/resources/learning-hub/tutorials/lidar-basics
https://poly.cam/
https://www.3dflow.net/3df-zephyr-photogrammetry-software/
https://www.3dflow.net/3df-zephyr-photogrammetry-software/
https://www.swift.org/documentation
https://www.llvm.org/
https://developer.apple.com/documentation/SwiftUI
https://developer.apple.com/documentation/realitykit
https://developer.apple.com/documentation/realitykit/realitykit-object-capture
https://developer.apple.com/documentation/realitykit/realitykit-object-capture
https://github.com/hollance/neural-engine
https://www.blender.org/
https://orcid.org/0000-0001-8650-0521

SISIOT Journal | journals.chnu.edu.ua/sisiot

poboTn € pPo3pobKa MOBINLHOIO 3aCTOCYHKY, AKMIN BUKOPUCTOBYE MeToAM GOTOrpammeTpii ANA CKaHyBaHHA 06’eKTiB.
OcHoBHOO nepesaroto doTorpammeTpii € HU3bKI BUMOTM [0 anapaTHOro 3abesneyeHHs, ase BogHOYac BOHa 3abesneuye
BIAHOCHO BWMCOKY TOYHICTb OTPUMAHUX Mmogenel. Kpim Toro, nporpama BukopuctoBye ceHcop LIDAR cmaptdoHa ans
MOKPALLEHHA AKOCTi 3MOMKM, 0COBNMBO ANA HU3bKOTEKCTYpoBaHMX 06’eKTiB. [aTumk LiDAR [03BOMAE TOYHO BUMMiptOBaTH
BiCTaHb MK MPUCTPOEM i 06’EKTOM, WO BaXK/MBO AN OTPUMAHHA iHPOpMaLii Npo Po3mip Ta NoAOXKeHHA 06’ekTa. Ann
nobyaosu 3D-moaeni 06’ekra i3 cepii 306paxeHb nporpama Bukopuctosye Object Capture API, LOCTYNHWI B onepaLinHux
cuctemax i0S, iPadOS Ta macOS. Llei APl nosHicTio BUKkopuctosye BbyaosaHi GPU i 610K HelpoHHOT 06pobku (NPU) ana
nobynoBu Ta Tecensawii XMmapu TOYOK i CTBOPEHHS MOIroOHaNbHOI CiTKM mogeni. Mporpama 6yna po3pobaeHa ana iPhone, ki
OCHalLleHi gaTumkom LiDAR, BuKopucToBYytoUM MOBY NporpamysaHHsa Swift, SwifUl ans iHtepdeiicy Kopuctysaya Ta RealityKit
an5 Object Capture APl. CTBOpeHMiA 3aCTOCYHOK NiATPUMYE TPU PEXKMMU POBOTU: CKaHYBaHHA 06’ €KTa, PEKOHCTPYKLiA moaeni
Ta nonepegHiv nepernag mogeni. o6 cnpoctutM npouec 3MOMKM 06’€KTa, NMporpama MOMKe aBTOMATUYHO pPobuTu
doTorpadii o6’ekTa Ta HagaBaTM BKasliBKM i pekomeHZauii KopwucTyBauesi. Lli pekomeHgauii mictATb nopaau LWoao
ONTMMA/IbHUX YMOB OCBIT/IEHHA, PO3TallyBAaHHA KaMepW, a TAKOXK MPOMIXKHWUIA BUTAAL XMapu TOYOK. licna 3aBeplueHHs
3MOMKM 06’€KTa Mporpama NepexoamTb B PEXMM PEKOHCTPYKLLT, AKUI BUKOPUCTOBYE OTPUMaHI, Nif Yac 3Momku, doTorpadii
Ta AaHi XMapu TOYOK. Llei npouec BKAIOYAE BUPIBHIOBAHHA 306parKeHHA, reHepaLilo AeTasibHOI XMapyu TOYOK, reHepalito
NoIroOHaNbHOI CITKM MOAENi, reHepaLito TEKCTYPU i KapTK HOpMasiel, a TaKoXK ONTUMI3aLito mogeni. Micna peKoHCTPYKL,
KOPUCTYBay MOXKe OTpMMaT Moaenb B popmarti danny USDZ Ta neperiaHyTH ii 3a LONOMOTrok CUCTEMHMX 3acobiB. Micna umx
KpOKiB Byn0 cTBOpeHo ABi TecTtoBi moaeni 6apabaHy Ta cagoBoi ¢irypu i3 3a40BiIbHOIO AKICTIO Ta TOYHICTIO, 36epiratoum
NMOYaTKOBMI PO3MIpP CKaHOBaHMX 06’€eKTiB. OTpMMaHi TPUBUMIPHI NOAIFOHANbHI MOAENI MOXKHA eKCnopTyBaTW B Pi3Hi 3D-
penaKkTopu Ta cnewianisoBaHi nporpamu.

KIKOYOBI C/IOBA doTorpammeTtpis, 3axonieHHsa 06’ekTa, MobinbHMIA npucTpil, swift, 3D moaens.

@ @ This article is licensed under a Creative Commons Attribution 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Vol 2, No 2, Paper 02007, pp. 1-7 (2024)

http://creativecommons.org/licenses/by/4.0/

