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ABSTRACT The paper presents the hardware implementation based on FPGA of the main cryptographic transformations of
the symmetric transformation algorithm of DSTU 7624:2014 and the stream cipher of DSTU 8845:2019, which are the national
encryption standards of Ukraine. In the case of DSTU 7624: 2014 developed and implemented a hardware implementation
for multiplication of two polynomials modulo x8 + x* + x3 + x? + 1 in the form of a combinational circuit that allows to
execute the MixColumn transformation by one cycle. SubBytes transformation is implemented based on asynchronous read-
only memory. For stream cipher, DSTU 8845:2019 the nonlinear function T are implemented as subtitution byte operation
in the form of precalculated cells of ROM memory. The multiplication function by & and @~ in Galois field arithmetic GF (264)
is realized based on ROM and combinational logic. The control of the modes of operation of the shift register with linear
feedback is performed based on a FSM. Both hardware implementations of encryption standards have been verified by the
authors according to the specified data in the standard, and their HDL code can be provided by the authors for further

research to interested parties.
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I. INTRODUCTION

lock symmetric ciphers are a key element in
B ensuring the confidentiality of information in

telecommunication systems. To be effective across
a variety of software and hardware platforms, these ciphers
must be stable and high-performing, with low resource
requirements. This is especially important in embedded
systems, which are increasingly used in industrial,
consumer, medical, automotive, cyber-physical systems,
IoT devices, and more [1,8,9]. However, embedded
systems are limited by computing power and energy costs
[8-11]. To protect information in these systems,
cryptographic algorithms must be effectively implemented
within these constraints. With the introduction of new
national standards for block symmetric ciphers, DSTU
7624:2014 and stream cipher DSTU 8845:2019 developed
under the supervision of Prof. I. Gorbenko and A.
Kuznetsov [2-4,7], it is essential to evaluate their
implementation on general-purpose microcontroller cores
and programmable logic integrated circuits (FPGA). While
DSTU 7624:2014 and DSTU 8845:2019 have been studied
on general-purpose microcontroller cores [1], their
effectiveness on modern FPGA platforms has yet to be
explored. By implementing these ciphers on FPGA, it
would be possible to utilize them in high-speed data
processing, storage systems, and IoT.

The proposed hardware implementation of the
symmetric cryptographic algorithms, DSTU 7624:2014
and DSTU 8845:2019, for FPGA-based embedded
systems, is aimed at optimizing the performance and

resource requirements of these ciphers while ensuring their
effective implementation on a wide range of embedded
systems. The primary goal of this work is to create FPGA-
based hardware implementations of these ciphers for use in
IoT devices.

The work is organized as follows: in section I, the
introduction, section II describes the main operations of the
encryption standards DSTU 7624:2014 and DSTU
8845:2019. Implementation of the main transformations of
the DSTU 7624: 2014 and DSTU 8845:2019 for FPGA in
section III. Conclusions in section IV.

Il. UKRAINIAN NATIONAL ENCRYPTION STANDARDS

A. DSTU 7624: 2014. DSTU 7624: 2014 "Kalyna" is a
modern symmetric block cipher that provides high security
and robustness against attacks. The cipher was adopted as
the national encryption standard of Ukraine in 2015 [4],
and it is widely used in various applications, including
information security and cryptography research. The
design of DSTU 7624:2014 is based on the well-known
AES cipher [5], but it introduces some significant
modifications that enhance its security properties.

One of the main differences between DSTU 7624:2014
and AES is the use of different randomly generated S-
blocks, as opposed to the same S-block used in each round
of AES. This modification increases the complexity of the
cipher and makes it more resistant to attacks. Additionally,
DSTU 7624:2014 employs alternating addition with cyclic
keys using modulo 2 and 2%, which further enhances the
security of the cipher.
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DSTU 7624:2014 supports various key and block sizes,
including 128, 256, and 512 bits [4], and its block diagram
is shown in Fig. 1.

FIG. 1. Block diagram of the DSTU 7624: 2014.

The following features characterize the encryption
scheme:

- whitening is performed by summing the input data
block with a subkey K, by modulo 26%;

- for cycles from 1 to N1 ( where
N, is number of rounds and N, € (10, 14,18))
cycle keys are entered by XOR with data block;

- the last encryption cycle consists of AES
transformations: SubBytes, ShiftRows,
MixColumns, and summing data block with a
cycle subkey K, by modulo 264;

- for MixColumns transformation used field GF (28)
constructed from the primitive polynomial p(y) =
x®+xt+ 3+ x4+ 1,

- in DSTU 7624:2014 four different S-box are used
instead of 1 in AES.

In the encryption process using DSTU 7624:2014,

N, + 1 cycle keys K; wherei = 0,...,N, — 1. are used.
The subkeys are generated during the key deployment,
which is a part of the algorithm that produces round keys
from the original key. The size of each subkey is the same
as the size of the plaintext block and the current state of the
cipher. In Fig. 2, the scheme of subkeys deployment is
shown, where each subkey is used once in the encryption
process. The key schedule algorithm for DSTU 7624:2014
is designed in such a way that it generates a unique subkey
for each round of the encryption process. The number of
rounds is determined by the key size, and for DSTU
7624:2014, it is 10 rounds for a 128-bit key, 14 rounds for
a 256-bit key, and 18 rounds for a 512-bit key. This key
schedule algorithm adds an additional layer of security to
the cipher, making it resistant to attacks that attempt to
reconstruct the original key from the subkeys.
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FIG. 2. Block diagram of subkeys deployment: a — intermediate
key K¢; b — cycle keys K;.

To generate an intermediate key K; at the input of the
algorithm, we provide the value of the master key K and
the constant const = N, + N, + 1 where Ny, Ny €
(2,4,8) and performing the necessary transformations
according to Fig. 2 a, we obtain an intermediate key K,
with size 64 X N, bits, which is equal to the size of the
input information block.

The value of the constant tmv, needs to be specified to
generate cycle keys. By performing the transformation in
accordance with Fig. 2b, using the intermediate key K,
constant tmv,,, and master key K, a cyclic key with a zero
index is obtained. Cycle keys with odd index K(y; 4 1) are
formed based on keys with even index K(; y by cyclic shift
to the left on 2 Ny + 3 bytes, ie K(p; 4 1) = Kz + 1) <<<
(2 N, + 3). When forming the next key with an even
index, the constant tmv, is divided on N, 64-bit
words (Wo, Wy, ..., Wy, _1). Next, every word is logically
shifted to the left by one digit, ie w; = (2 * w;) mod 2%,

B. DSTU 8845: 2019. DSTU 8845:2019 is a stream
cipher that follows the classic summing generator scheme,
similar to the SNOW 2.0, SNOW 3.0, and SNOW V
generators [5-6, 7]. It incorporates all the basic operations
of ciphers from the SNOW family while replacing the AES
encryption round with the nonlinear substitution function
T, which implements the permutation of finite field
elements GF(2%) using components of the national
cryptographic standard DSTU 7624:2014.

To ensure a high and ultra-high level of security, DSTU
8845:2019 uses a 256-bit initialization vector IV and a 256-
bit or 512-bit secret key K, considering the possible
application of quantum cryptanalysis. The developers of
DSTU 8845:2019 focused on modern 64-bit computer
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systems, selecting a word size of 8 bytes. Byte records use
a representation from significant to less significant bits.
The keystream generator for DSTU 8845:2019 in gamma
mode is illustrated in Fig. 3.
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FIG. 3. Keystream generator DSTU 8845: 2019 in the mode of
generating a gamma at time 1.

Fig. 3 shows that the generator consists of a shift
register with linear feedback and a FSM that performs the
nonlinear transformation T. The input data (encryption key
K and initialization vector /}) is used to initialize the state
variable S;(i = 0), which consists of two components
which include [12]:

- 16 variables s(- cells of the shift register with

lincar feedback: s® = (s&, s@ O O O
sl(z,), sél.), s, s, 50, s 0 00
s, 55 s

- two registers of a finite automata r®: r® =

(r®, 0y,

At the output, we get the keystream (gamma), which is
formed from 8-byte words Z;.

From Fig. 3 follows that the taps of the shift register
with linear inverse feedback are constructed from a
primitive polynomial over the field GF (2%%): f(x) =
x10 + x13 + ¢ 1x + @, where a is the root of the
primitive polynomial over the field GF (28): gz(z) = z8 +
BL7077 4 L6676 4 B275 4 B22474 4 B70,3 4 B2

The field GF (28) as in DSTU 7624: 2014 is
constructed from the primitive polynomial p(y) = x& +
x* + x3 + x? + 1 on the field GF(2), and the coefficients
g(2) are given through the degree of the primitive element
B of the field GF (28), ie f is the root of the polynomial

p(»).

l1l. IMPLEMENTATION OF THE MAIN
TRANSFORMATIONS OF THE DSTU 7624: 2014 AND
DSTU 8845:2019 FOR FPGA

A. BASIC TRANSFORMATION DSTU 7624: 2014. The
column of 8 bytes (Fig. 4 a) is the main element of
transformations in DSTU 7624: 2014. Depending on the
size of the input block and key, the matrix of state will be
formed using a certain number of columns. For example,
in the case of a 128-bit block size and key, the matrix of
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state will consist of 2 columns, as shown in Fig. 4a.
Similarly, for a block size of 256 and 512 bits, the matrix
of state will contain 4 and 8 columns, respectively, as
shown in Fig. 4 b and 4 ¢. To demonstrate the operation,
we will use a block size of 128 bits.

Wo|Wg | |Wo|Wg (W16(W24| |Wo| Ws |W16|W24|W32(W40[Wsg|Wse

Wi|Wg | |W1|Wg (W17(W3s5| |W1| Wg |W17(W325|W33(Ws1(Ws9|Ws7

Wa|Wio| |W2|W10(W18(W26| |W2|W10|W18|W26|W34(W42(W50|Wssg

W3|W11| |W3|W11|(W19(W27| |W3|W11|W19|W27|W35(W43(W51|Ws59

Wy |Wiz| |Wa|W12(W20[W2g| (W4 |W12|W20(W28|W36(Wa4|W52|Weo

We|Wi14| |We|W14|(W22(W30| |We|W14|W22|W30|W38(Wa6[W54|We2

W7|Wis| |W7|W1s5(W23|W31| |W7|W15|W23|W31|W39|W47(W55|We3

a) b) c)
FIG. 4. Matrix of state: a) 128 bit, b) 256 bit, ¢) 512 bit.

At the input, we receive a block of information W of
size 128 bits, which is represented as a matrix of size
2 X 8 bytes (Fig. 4 a). It should be noted that the state
matrix is filled with bytes in columns: W =
{wo, wy, wa, W3, Wy, Ws, We, Wy, We, Wo, W1g, W11, Wiz,

W3, Wy4, Wis . Bit order is little-endian.

To generate an intermediate key, the value of the key K
and the value of const = N, + N, + 1=2 + 2 +
1 (in the case of a 128-bit key) transmitted to the input
and performed four rounds of encryption. The first round
is the initial whitening that is described by:

C ={co,c1} (1)

where:
Co = (({Wo'W1'W2'W3'W4'W5'W6’W7}) +
({ko, kv, ke, k3, kg, s, kg, 7)) mod 264

(({st Wo, Wi, Wiq, Wiz, W3, Wig, Wis}) +
({kg, ko, k10, K11, K12, K3, Kpas k15})) mod 2%*
264

and c, =

Taking the amount modulo can be executed by
rejecting the transfer bit. This operation is trivial and can
be implemented using a 64-bit carry adder.

After the initial whitening, in the second cycle, the
current state is converted by SubBytes operation. The
SubBytes operation consists in replacing each element w; ;
of the state matrix W by 7; ;o9 4(W; ;) Where 1p,: Vg =
Vg, m € {0, 1, 2, 3} substitutions are given in appendix A of
DSTU 7624: 2014 [4].

For example, if: w=0x11, then 7;(0 % 11) =
0 x 15. The peculiarity of DSTU 7624: 2014 is that it
determines the use of four tables of substitutions, so it is
advisable to implement such tables based on cells of read-
only memory (ROM). From the condition, i mod 4it
follows that the elements in one row use the same table of
substitutions. That is the case of 128-bit block size causes
the use of eight ROM blocks using multiplexers (Fig. 5).
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sbox0:sub_b0

127sb2ed3sa] | finew_sbowwl15.0]

in_datal127.01 [—
sboxO:sub_b4

llrev_sbon[15.0]

sbox1:sub_b1

b kb

> out_subbytes_128[127.0]

TS

b)
FIG. 5. Module SubBytes based on ROM in RTL Viewer: a)
module SubBytes with 128-bit input, b) submodule sbox0.

Memory cells are organized as a two-dimensional array
of 256 words of 1 byte each. This allows the SubBytes
operation to be executed by one clock period.

The ShiftRows operation is a cyclic shift to the right of
the rows of the state matrix, and is determined by the
following relationship:

shift, = || )
where L € {128,256,512}. Relation (2) for 128, 256,
512-bit block size can be visualized as follows:

Wo | Wg || W | Wg |W16|Was|| Wo | Wg |W16|W24|W32|Wao|Wag|Wse

Wy Wy || Wy | Wg |W17|W3s| |Ws7| Wy | Wy |Wq17|W3s5|W331Wya1|Wag

Wy (W1o| [Wae| W2 |W10|W1s||Ws0|Wsg| W2 [W10|W18|W26|W34|Wa2

W3 (W11| [Wa7| W3 |W11(W1g||Wa3|Ws51|Wig| W3 |W11|W19|W37|W3s)

Wia| Wy | (W12|Woo| Wa |Wag| (W36|Was|Ws2(Weo| Wa |W12(W20|W2s

Wi3| Ws | (W13|Woq| W5 |Wag| (Wag|W37|Wys5|Ws3|Weq| Ws (W13|W3q

Wi4| We | (W14|W22|W30| We | [W22(W30|W38|Was|Ws4|We2| We (W14

Wis| Wy

a) b) c)
FIG. 6. Circular shift for: a) 128 bit, b) 256 bit, ¢) 512 bit.

In the case of a fixed data block size, the hardware
ShiftRows operation can be implemented simply by
selecting bits from the bus. In the case of a variable block,
it will be necessary to use several circuits based on
multiplexers.

When implementing additions modulo 2 and 2%* based
on four input LUTs (Look-up table) 128 LUTs will be

Wi15|W23|W3q| W7 | (W15|W33|W31|W39|Wa7|Wss5(We3| W7
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used. The SubBytes operation will require 3328 LUT when
using a 128-bit state matrix and 8§ ROM blocks for
Cycclone V FPGA.

B. MIXCOLUMS OPERATION IN DSTU 7624: 2014. The
MixColumn operation in DSTU 7624: 2014 is to convert
each element of the state matrix by the formula:
where: @ is the scalar multiplication of vectors, Wjis the
column of the state matrix, v=

(0x01,0x01, 0x05, 0x01, 0x08, 0x06, 0x07, 0x04).

The operation of multiplication and addition is
executed in the finite field formed by the irreducible
polynomial ¥V (x) = x84+ x* + x> + x2 + 1 or Ox11d in
hexadecimal. The vector v forms a circulating matrix of the
MDR code and consists of a sequence of byte constants in
the hexadecimal representation, which is interpreted as
elements of the field GF (28), with a cyclic shift relative to
the vector over the finite field. The MixColumn operation
can be defined as:

0x01 0x01 0x05 0x01 0x08 0x06 0x07 0x047 [Wo.j
0x04 0x01 0x01 0x05 0x01 0x08 0x06 0x07||Wu;j
0x07 0x04 0x01 0x01 0x05 0x01 0x08 0x06||Wz,j
0x06 0x07 0x04 0x01 0x01 0x05 0x01 0x08| W3, (4)
7 0x08 0x06 0x07 0x04 0x01 0x01 0x05 0x01||Waj
0x01 0x08 0x06 0x07 0x04 0x01 0x01 0x05 | |Ws.j
0x05 0x01 0x08 0x06 0x07 0x04 0x01 0x01||Ws.j
0x01 0x05 0x01 0x08 0x06 0x07 0x04 0x01d LW7;

where C; vector. Multiplication of bytes from the columns
of the state matrix by the vector v can be implemented in
the form of a combinational scheme.

Multiplying any nonzero element of the field GF (28 )
by 2 can be implemented as a logical shift of bits to the left
by 1 position, resulting in a product of 9 bits. Next, from
this result need to subtract modulo x® + x* + x3 + x2 +
1. These operations can be written as follows:

k2 (Wi,j) = Wi,j *2 = {Wi,j [6 0], 1’b0} @ (8’h1d A
{8{w; [71}D) ®)
where: A is a conjunction operation. Relation (5) describes
the combinational scheme shown in Fig. 7.

data[7.0] mbE
7

> mix_data[7.0]

6:4,0,7

FIG. 7. Multiplication of the nonzero element of the field GF(28)
by 2 modulo Y(x).

Taking into account (5), multiplication by 3 any
nonzero element can be written as:
ks(wij) = wij %3 =ky(wy;) ®w,; =
(w;; * 2) @ w;; = ({w;;[6:0],1'b0} D
(8'h1d A {8{w;;[7}}) ® w;, (6)
Accordingly, the combination scheme described (6)
will look like:
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data[7.0] [ —{> mix_data[7..0]

FIG. 8 Hardware implementation of (6).

Accordingly, for other coefficients from the vector v,
and taking into account the rules of transformations in GF

(28), the equations describing the corresponding
combinational circuits, will look like:

ky(w;;) = ky(ky(wy ;) (7

ks(w;;) = ka(w;;) @ w;; ®)

ke(w; ;) = ky(ks(wy;)) )

k;(w;;) =ke(w;j) @ w; (10)

kg(w; ;) = ky(ky(wy ;) (11)

So, taking into account (5-11), equation 4 takes the
following form:

C =

Wo,j é wy j D ks(wy,;) @ wsj @ kg(wy, ;) @ ke(ws ;) @ ks (we ;) D ka(wy;)
ka(Wo,j) @ wy,; @ wy,j @ ks(ws ;) @ wa; @ ke(ws ;) @ ke(ws ;) D ky(wy,)
k7 (Wo,;) @ ka(wy ;) @ waj @ wsj @ ks(wy ;) @ ws; @ keg(We,;) @ ke(ws;)
ke(Wo,j) D k7 (wy,j) D ka(wy,;) @ wsj @ wyj D ks(ws ;) @ we j D kg(wy,;)
kg(Wo,j) D ke(W1,j) D k7 (wa,;) @ ka(ws ;) D wyj @ wsj @ ks(we ;) © wy;
Wo,j @ kg(w1,j) @ ke(wz,j) @ ky(W3,;) @ ks(Wa,j) ® ws ; © we,; D ks(wy,))
ks(wo ;) @ wy,; @ kg(wy,;) @ ke(W3j) @ k7 (Wa,;) @ ka(ws ;) © we; © wy;
wo,j @ ks(wy,;) @ wyj @ kg(ws ;) D ke(wy ;) D k7 (ws ;) D ka(ws ;) © wy;
(12)

So, we got the equation (12), describing the
combination circuit which can be easily implemented in a
hardware description language (Verilog, VHDL) for any
FPGA chip architecture.

C. DSTU 8845:2019. In DSTU 8845:2019, the nonlinear
substitution function QT (see Fig. 3) implements the
permutation of elements of a finite field GF (26%) using the
MixColumn operation defined above by (12) for DSTU
7624:2014. Effective calculation of C; can be realized

based on the next rule:
Q" = To[wol®T, [w, 1T, [w,|®T; [w; 1T, [w,]®
OTs [ws DT [we BT, [w, ], (13)
where T;[w;] are defined in [7] and can be realized as
precalculated substitution tables on ROM (Fig. 9).

The use of constant tables allows to significantly reduce
the number of operations, in particular, the nonlinear
substitution function is calculated by seven XOR
operations over 64-bit blocks.
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t_7:table7 -

Jtable_T~0

xw{63.0) -

(3.0 -

xw(63.0)

of63.0] |,

-
.
5
1=
xw(63.0)

xw{63.0) s a ;’:{
; ftable 710
xo{63.0) S .
1=
,_I(table_T»«n
. b
b/
ls=
Jtable_T~12
AS
En )
=
FIG. 9 Hardware implemented module
transformation function T.

7boxw(7.0) new_sboxw(63.0] 1

t_1:table1

of nonlinear

The concept of implementing an encryption system
based on the developed hardware IP cores for the Cyclone
5 FPGA is shown in Fig. 10.

| 1 |
| 1 |
| | I
| T |
| i |
| (. Embeded OS !
| 1 |
| | |
: conwrot| ! ! ]
| RAM s | Django based |
! [ aplication |
[ 1 |
| 1 |
| [} ]» A q A 1 I
| T 7] |
| [ D |
| (| A |
I A 2 v V¥ I I
| > Sync ] o |
| T I
| | |
| |
| |

FIG. 10 Hardware implemented IP cores for DSTU 7624:2014 of
of nonlinear transformation function T.

The mmap module can be used to interact through the
control panel based on the Django application with the
encryption module.

IV. CONCLUSION

In the work IP cores for FPGA-based systems based on
the algorithm of symmetric block transformation, DSTU
7624: 2014 and stream cipher DSTU 8845:2019 are
developed and verified.

In the case of DSTU 7624: 2014 developed and
implemented a hardware implementation for the
multiplication of two polynomials modulo x® + x* + x3 +
x% + 1 in the form of a combinational circuit that allows
the MixColumn operation in one cycle. SubBytes
transformation is implemented based on asynchronous
ROM.
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For stream cipher, DSTU 8845:2019 are developed
multiplication of two polynomials modulo x8 + x* + x® +
x*+1 in the form of precalculated tables of RAM
modules, which allows the MixColumn operation for the
function nonlinear substitution 7" for one period of clock.
The multiplication function by a and @™ in arithmetic GF
(2%%) is realized based on asynchronous permanent
storage devices and combinational logic. The control of the
modes of operation of the shift register with linear
feedback is performed based on a finite state machine. The
control of the source keystream and the feedback elements
is performed based on a combinational scheme.

Future work will consist of the creation of drivers for
real-time Linux-based solutions for Cyclone V SoC FPGA
and exploring performance of the system for comparing
with modern solutions.
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YKpaiHCbKi HaUiOHaNbHI CTaHAAPTU WKNpPYBAHHA ANA
B6ygoBaHux cuctem Ha 6a3i FPGA

Oner Kpynikoscbkuii ¥>%", Cepriit Fantok?, Irop CadpoHos?, IsaH Fop6eHko?

1lHTerpoBaHmMi LEHTP AOCAIAKEHb, PO3POBOK Ta iIHHOBALiM Y raysi NnepegoBUX MmaTepiasis, HAHOTEXHOIOFIN | Po3noAineHnX cuctem s
BWUIOTOB/IEHHA Ta KepyBaHHsA, Cy4aBCbKuUin yHiBepcuTeT imeHi LTedaHa yen Mape, Cyyasa, PymyHin
2 PaKy/IbTET e/IEKTPOTEXHIKM Ta KOMM'IOTEPHMX HayK, CydaBCbKuit yHiBepcuTeT imeHi CtedaHa yen Mape, Cyyasa, PymyHin
3 Kadeapa pagiotexHiku Ta iHpopmaLiiHoi 6e3nekn, YepHiBeLbKMil HauioHanbHMUI yHiBepcUuTeT imeHi KOpia ®eabpkosuya, YepHisui, YkpaiHa
4 Kadeapa 6e3neku iHGopmMaLiMHUX CMCTEM | TEXHON 0TI, XapKiBCbKMI1 HauioHanbHUIA yHiBepcuTeT imeHi B. H. KapasiHa,. XapkiB, YkpaiHa.

*ABTOp-KOpecnoHaeHT (EnekTpoHHa agpeca: o.krulikovskyi@chnu.edu.ua)

AHOTALLIA Y poboTi npeacTaBneHo anapaTHy peasnisauito Ha 6a3i FPGA ocHOBHUX KpunTorpadiyHUX NEPETBOPEHD a/ITOPUTMY
6710K0BOr0 CUMETPUYHOTO KpunTorpadiyHoro nepetsopeHHa ACTY 7624:2014 Ta NOTOKOBOro CUMETPUYHOTO NEPETBOPEHHSA
LCTY 8845:2019, siKi € HauioHaNbHUMK CTaHAAPTamM KpuntorpadiyHux nepetsopeHb YKpainu. Y sunagky ACTY 7624: 2014
anapaTHa peai3aljis MHOXeHHA ABOX noniHomis 3a moaynem x& + x* + x3 + x? + 1 BuKoHaHa y BUrNAA] KOMBGIHALHOT
cXeMu, Aka 403Boss€e BUKOHyBaT MixColumn nepeTBopeHHA 3a 0auH UMK, NepetBopeHHs SubBytes peanizoBaHo Ha OCHOBI
nocTitHoro 3anam’aTosytodoro npuctpoto (M3M). KepyBaHHA MOAYAAMW PO3rOPTAHHA MPOMIXKHUX K/KOYIB Ta WNMPYBAHHA
peanisoBaHo Ha 6a3i ckiHYeHoro aBTomarta. [na notokosoro wudpy ACTY 8845:2019 HeniHiHa dyHKLia T peanizoBaHa K
6aitToBa onepalyis MigCcTaHOBKM Y BUMAAI nonepeaHbo o6uMcieHnx KOmipok M3M. DyHKUiA MHOMEHHA Ha a i al s
apudmetunui nona Fanya GF (2 64) peanizoBaHa Ha ocHoBi M3M Ta KOMbiHALINHOI NOTiKK. YNpaBAiHHA pexumamu poboTm
pericTpa 3cyBy 3 MliHIMHMM 3BOPOTHMM 3B'A3KOM 34iMCHIOETLCA Ha OCHOBI CKiHYEeHOro aBTomarta. [aa nNiaBULEHHSA WBMAKoAIT
BMKOHAHHA KpunTorpadiyHMX nepeTBopeHb aBTOpaMM BUMKOPUCTAHO KOHBEEPHMI MpUHUMN nobyaosu IP spep. Pobota
MOAYNiB anapaTHMX peanisauiit cTaHgapTiB KpunTorpadidyHMx nepeTtBopeHb ACTY 7624:2014 ta ACTY 8845:2019
BepudikoBaHa aBTOpaMu BiAMOBIAHO A0 BKa3aHMX KOHTPOJIbHUX BEKTOPIB Y CTaHAapTax, i ix kog HDL moxke 6yt HagaHui
aBTOpamMuM AN NoAanbluMX AOCNigKeHb 3aliKaBleHMM CTOpoHam. AmnapaTHa peanizauia [P agep wuopis €
KpocnnatpopmeHoto i moxke ByTM aZanToBaHOW Ha pisHOMaHITHI FPGA i3 BianoBigHMMKM pecypcamu. TaKoK, B poboTi
npeAcTaBieHo A5 NoganblIMX 40CNIAKEHb KOHLENLLi0 peani3auii cuctemm WwndpyBaHHA Ha OCHOBI PO3PO6AEHNX anapaTHUX
IP-agep ansa FPGA Cyclone 5 i3 BMKOpMCTaHHAM BOyAOBaHOI onepauiiHoi cuctemmn Ha 6asi sgpa Linux gns noganbluoi
iHTerpauii ix o BbyaoBaHMx cuctem abo npuctpois loT.

K/1KOYOBI C/IOBA ACTY 7624:2014; ACTY 8845:2019; FPGA; B6yoBaHi cuctemu.
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