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ABSTRACT This article explores improving the accuracy and reliability of spectrum sensing methods within cognitive radio 

networks. The primary focus is on how signal fading and frequency distortion influence the results of spectral analysis. These 

issues can severely impact the precision of signal detection, making adaptive methods and filters indispensable for accurately 

detecting changes in the spectral landscape. The purpose of the paper is to evaluate the effectiveness of various adaptive 

methods and filters – such as wavelet transforms, along with Butterworth, Chebyshev, and Kaiser filters—in improving the 

detection of changes within the spectral environment across different signal-to-noise ratio (SNR) levels. The research spans 

a broad frequency range, concentrating on pivotal technologies like 5G NR, Wi-Fi 6, DVB-T2, and GPS, each having unique 

requirements for signal precision and dependability. The spectrum sensing approach described in the article achieves high 

signal detection accuracy under favorable conditions, particularly when the SNR is strong. Experiments revealed that with 

SNR values above 1 dB, the signal detection accuracy (True Positive Rate, or TPR) for all technologies examined remains at or 

above 0.90. For instance, the TPR for 5G NR is 0.92 at an SNR of 1 dB, while for Wi-Fi 6, it stands at 0.90. However, the 

effectiveness of the method declines as the SNR decreases. For example, with 5G NR, the TPR drops to 0.70 at an SNR of -21 

dB, indicating a heightened probability of false signal detection. Similar patterns are observed with Wi-Fi 6, where the TPR 

falls to 0.65, with DVB-T2 to 0.68, and GPS to 0.66. Additionally, the average noise level rises as SNR diminishes, making 

accurate signal detection increasingly challenging and emphasizing the need for further refinement of these methods. The 

findings underscore the need for ongoing advancements in spectrum monitoring, especially under low SNR conditions. Future 

research should prioritize developing new or refining existing adaptive algorithms capable of operating effectively in complex 

spectral environments. Exploring the impact of other filtering and transformation methods could also yield valuable insights. 

Moreover, the incorporation of machine learning techniques offers a promising path for boosting the adaptability and 

accuracy of spectrum monitoring in real-world telecommunication systems. 
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I. INTRODUCTION 

he paradigm of cognitive radio networks must 

embed effective sensing and at the same time be 

responsive to the dynamism in the environment. 

These are actively accessed parts of the radio spectrum, 

where dynamics are important, through accurate spectrum 

sensing, for the purposes of reliable communication. There 

are many problems with spectrum sensing, especially in 

conditions where signal fading and frequency distortions 

are common. 

Effective spectrum sensing determines how well a 

network could detect and access available frequency 

bands. The signal-to-noise ratio (SNR), in general, is 

mainly critical in determining the extent of signal detection 

performance realized with respect to fluctuating SNR in 

cognitive radio systems. High SNR performance ensures 

robust detection of the signal so that the network can attain 

the said signal, thus allowing the network to operate and 

access the spectrum effectively. But, with the decrease in 

SNR, the probability of false detection increases; this will 

cause interference with communications, eventually 

lowering the network efficiency. 
 In response to these challenges, this paper investigates 
the appropriateness of adaptive methods and filters in 

increasing the accuracy of spectrum sensing. The research 
is primarily concerned with wavelet transforms and 
Butterworth, Chebyshev, and Kaiser filters, how they 
perform in varying frequency ranges and technologies: 5G 
NR, Wi-Fi 6, DVB-T2, and GPS. Since all these 
technologies necessitate the ultimate highest possible 
precision, reliability in the filtering method to be selected, 
this has been major criteria in selection. 

The results of this article suggest that research on the 
enhancement of spectrum sensing methods must be 
continued in the future, especially under low SNR 
conditions. Further development of the concept of 
cognitive radio networks warrants an upgrade and 
enhancement of adaptive algorithms so that the 
communication is kept reliable in ever-changing spectrum 
environments. 

II. REVIEW OF THE LITERATURE 
Reference [1] considers application wavelet transforms 

in the analysis of digital signals, thus establishing a 
foundation for using wavelet-based techniques in the 
spectrum sensing process. The research is focused on the 
efficiency of wavelet transforms in complicated signal 
environments, which is a crucial factor for effective 
spectral analysis. This research leads to understand how 
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wavelet-based methods can improve signal detection and 
processing under varied and difficult conditions. 

The cited study [2] detailed methods for localizing 

unauthorized sources of radiation and noted that, 

fundamentally, accurate signal processing is important for 

preserving the integrity of cognitive radio networks. The 

ideas considered in their work are close to a more general 

framework that aims at attaining accuracy in spectrum 

sensing by controlling the interference and effects of 

unauthorized signals. 

The paper [3] focuses on the use of adaptive algorithms 

with cognitive radio networks and finds that, in general, the 

use of adaptive methods for signal processing greatly 

improves the reliability and performance of the mentioned 

networks. Their findings support the necessity of employing 

adaptable filters and algorithms, particularly in 

environments with fluctuating signal-to-noise ratios (SNRs). 

Spectrum sensing techniques in cognitive radio networks 

have been researched and recently reviewed in various 

works [4-6]. This includes information criteria in spectrum 

monitoring; Fast Fourier Transform in spectrum analysis; 

and signal robustness studies in wireless access systems. All 

these underline the importance of adaptive filtering and 

signal processing methods to ensure stably reliable sensing 

of the spectrum under diversified network conditions. While 

the results from these studies have been largely positive, a 

literature gap exists in terms of the basic rationale regarding 

the selection of filter techniques to maximize spectrum 

sensing efficiency in cognitive radio networks. 

III. THE MATERIALS AND METHODS 
Steps of the Adaptive Algorithm for Spectrum 

Monitoring in Conditions of Distortion and Fading Using 

Variable Time Segments, Wavelet Transform, and 

Butterworth, Chebyshev, and Kaiser Filters (Figure 1): 

1. Signal Acquisition: The goal of this stage is to 

ensure accurate signal collection for further analysis.  
1.1. Signal Source Identification: Specialized 

equipment is used to reduce noise levels. The collected 

signal is represented as 𝑥(𝑡). 
1.2. Receiver Selection: Receivers are chosen based on 

the characteristics of the signal and environmental 

conditions, requiring high sensitivity 𝑆 and the ability to 

operate in environments with high levels of noise and 

interference 𝐼. Let 𝑃𝑟 represent the received signal power; 

then the condition 𝑃𝑟>𝑆+𝐼 must be met. 
1.3. Environmental Conditions Analysis: This 

involves analyzing potential sources of interference, noise 

levels, and other factors that affect signal quality. Moving 

objects and weather conditions can cause signal fading and 

distortion. If H(t) is the fading coefficient, then 

y(t)=H(t)⋅x(t). 
1.4. Signal Recording: The collected signal is 

recorded and stored for further analysis. If d(t) is the 

recorded signal, then d(t)=y(t)+n(t), where n(t) is the 

measurement noise. 
1.5. Accounting for Fading and Distortion: The 

overall signal model, taking into account fading and 

distortion, is represented as follows: 

  𝑦(𝑡)=H∙x(𝑡) ∙ exp(𝑗𝛺t+jΘ)+V(𝑡)           (1) 

For modeling fading, the Rayleigh distribution is used, 

considering 𝜎𝐻
2as the variance of the channel attenuation 

coefficient. 

   𝑝𝐻(ℎ) =
ℎ

𝜎𝐻
2 exp (

−ℎ2

2𝜎𝐻
2)    (2) 

2. Signal Sampling.  The signal is divided into short 

segments (frames), allowing real-time spectral analysis and 

enabling the tracking of changes in the spectral 

composition of the signal over time. 
2.1. Signal Segmentation: The signal is divided into 

short frames of duration 𝑇. These frames may overlap to 

reduce information loss at the edges of the frames. 
2.2. Weighted Multiplication: Each frame is 

subjected to weighted coefficients (a window function) to 

minimize discretization effects and ensure smoother 

transitions between frames. This is expressed by the 

formula:  

 𝑦𝑡(𝑛)=x𝑡(𝑛)∙w(𝑛),n=0,1, … .,N − 1        (3) 

3. Signal Preprocessing: remove noise and enhance 

the signal quality for subsequent spectral analysis. 

Modified Butterworth filters are used for this purpose, 

offering maximum smoothness in the frequency response. 

This reduces signal distortion and minimizes the filtering 

impact on the useful signal [7, 8]. 
Analog Prototype of the Modified Butterworth Filter: 

  𝐻𝑎(𝑠) =
1

√1+(
s+∆s

𝜔𝑐
)
2𝑚

∙H0 ∙ exp(jθ),           (4) 

where s is the complex variable; ∆s is the frequency shift; 

𝜔𝑐 is the cutoff frequency; m is the filter order. 
For the Digital Butterworth Filter, the analog prototype 

is transformed into digital form using bilinear 

transformation of the 𝑧-variable [8]: 

   s=
2

𝑇

1−𝑧−1

1+z−1
,          (5) 

where T is the sampling period. 
This results in a low-pass Butterworth filter [8] with 

order m, accounting for the effects of fading 𝐻0 ∙
exp(jθ)distortion exp(𝑗𝛺t+jΘ) and noise V(t), represented 

as: 

𝐻𝑑(𝑧) =
𝐵(𝑧)

𝐴(𝑧)
∙H0 ∙ exp(𝑗(𝛺t+θ+Θ))+V(𝑡),        (6) 

         
𝐵(𝑧)

𝐴(𝑧)
=

∑ 𝑎𝑘𝑧
−𝑘𝑚

k=0

∑ 𝑏𝑘𝑧
−𝑘𝑚

k=0
  

4. Recurrent Time Segmentation: involves re-

segmenting the signal while accounting for dynamic 

changes in the spectral environment as well as the effects 

of fading and distortion. 
4.1. Adaptive Segmentation: The signal is divided 

into segments of varying durations Ti, allowing for a more 

precise consideration of changes in the signal's 

characteristics. For each segment, the current values of the 

fading coefficient H(t) and frequency distortion Ω(t) are 

calculated. 
4.2. Frame Correction: Each frame is corrected to 

account for fading and distortion. The correction formula 

is as follows: 

  𝑦𝑖(𝑡)=H𝑖(𝑡)∙x(𝑡) ∙ exp(𝑗𝛺𝑖𝑡),           (7) 

where 𝑦𝑖(𝑡)is the corrected signal for the i-th frame, 

𝐻𝑖(𝑡)is the fading coefficient for the i-th frame, and 𝛺𝑖is 
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the frequency distortion for the i-th frame. 
4.3. Recursive Filtering: Adaptive filtering is applied 

to each segment, considering the current values of fading 

and distortion, which helps to reduce the impact of these 

factors on signal quality. For example, an adaptive 

Butterworth filter can be used for each segment, with 

parameters that change according to the values of 𝐻𝑖(𝑡)and 

Ωi. In cases where high precision in the passband is 

required, a Chebyshev filter may be appropriate. If 

minimizing signal delay is critical, a Kaiser filter can be 

employed [1, 9].  
4.4. Analysis and Integration of Results: The results 

of processing each frame are integrated to obtain an overall 

result. This integration allows for constructing a 

comprehensive picture of spectral changes in the signal 

over time. 
5. Wavelet Transform (WT): The wavelet transform 

decomposes the signal into its constituent frequencies, 

revealing the amplitude and phase of each frequency in the 

spectrum, allowing for a detailed analysis of the time-

frequency characteristics of the signal. The wavelet 

transform, considering distortions and fading, is calculated 

using the following formula [10-12]: 

 , (8) 

where τ is the scaling parameter, a is the shift parameter, 

𝜓(𝑡) is the mother wavelet function, and 𝜓(𝑡)is the 

complex conjugate of the wavelet function. 
6. Filtering WT Results: At this stage, the wavelet 

transform results undergo additional filtering using 

Chebyshev filters to improve resolution and reduce 

interchannel interference. The power of the frame and its 

spectral density are described by the formula [1, 9, 12]: 

  𝑃𝑥(𝑓) = |WT(t,f)|2.    (9) 

7. Calculation of Power Spectral Density (PSD) of T 

Frames: This step is necessary to obtain the information 

about the distribution of signal power in the frequency 

domain over a prolonged period. The PSD 𝑃𝑓indicates how 

the signal power is distributed across frequencies 

  𝑃𝑓 =
1

𝑇
∑ 𝑃𝑥(𝑓)
𝑇−1
t=0 .              (10) 

8. Calculation of Average Spectral Power, which 

provides an overall assessment of the signal's power in the 

frequency domain. The formula for calculating it is: 

  𝑃avg =
1

𝑁
∑ 𝑃𝑓
𝑁−1
f=0 .            (11) 

9. Calculation of the Decision Statistic r(k), which is 

resistant to background noise levels, is calculated to 

identify signals that exceed the noise level. This enables 

the identification and analysis of useful signals in noisy 

conditions [11] 

  𝑟(𝑘) =
𝑃𝑓(𝑘)

𝑃avg
.         (12) 

10. Threshold Value Calculation: determines the 

threshold level to distinguish between useful signals and 

interference, i.e., to detect the presence or absence of a 

signal at a specific frequency. It is calculated as [11]: 

  λ=
1

𝑁
∑ 𝑟(𝑘)𝑁−1
k=0 .               (13) 

11. Spectrum Analysis: The results of spectrum 

analysis are used to determine the frequency components 

of the signal. At this stage, Kaiser adaptive filters are 

effectively used to fine-tune the filtering parameters and 

increase analysis accuracy [3]. The formulas are: 
– Kaiser window function: 

 𝑤(𝑛) =
𝐼0(𝛽√1−(

2𝑛

𝑁−1
)
2
)

𝐼0(𝛽)
;                   (14) 

– Modified Bessel function of the first kind (zero-order): 

  𝐼0(𝑥) = ∑
(
𝑥

2
)
2𝑘

(k!)2
∞
k=0 ,             (15) 

where w(n) is the value of the Kaiser window at point n, 

𝐼0is the modified Bessel function of the first kind (zero-

order), β is the window shape parameter, and N is the 

window length. 

 

FIG. 1. Adaptive Algorithm for Spectrum Monitoring Using 

Wavelet Transform and Filtering. 

12. Monitoring and Anomaly Detection: This stage 

includes accounting for modern spectrum monitoring 

conditions, such as high dynamics of changes, multiple 

signal sources, and high levels of interference. Based on 

the WT results, threshold values for frequency amplitudes 

are established, and spectrum changes are monitored. 

Comparing the current spectrum with the baseline allows 

for accurate detection of unusual events or anomalies in the 

spectrum. The decision conditions are: 

 
𝑟(𝑘)>α ⇒ channelisoccupied,

𝑟(𝑘)<α ⇒ channelisfree,
         (16) 

or 

𝑃𝑓(𝑘) − α∙Pavg > 0 ⇒ channelisoccupied,

𝑃𝑓(𝑘) − α∙Pavg < 0 ⇒ channelisfree.
   (17) 

After analyzing the detected anomalies in frequency 

data, a decision is made on further actions, which may 

include adjusting spectrum monitoring settings, re-
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collecting data, excluding anomalies from the analysis, or 

taking measures to mitigate the consequences. 

IV. EXPERIMENTS 

To verify the accuracy of the developed algorithm of 

spectrum monitoring under distorted and faded conditions, 

with the use of time segments having various lengths, a 

wavelet transform, Butterworth, Chebyshev, and Kaiser 

filters, a software realization was made within the Python 

programming language. The input data for the experiments 

are given in Table 1.  

TABLE 1. Input Data. 

Parameter Value 

Signal Types 4G LTE, 5G NR, Wi-Fi 6, 

DVB-T2, GPS 

Sensitivity, dBm -94, -116, -107, -95, -100 

SNR, dB 1, -5, -12, -15, -21 

Channel Type AWGN 

Number of Primary Users 50 

Probability of False Alarm 0.005 

FFT Size (N) 512 

Number of Frames (T) 250 

Wavelet Transform Morlet or Daubechies 

Butterworth Filter Cutoff Frequency: 0.1, 

Filter Order: 4 

Chebyshev Filter Filter Order: 5, 

Allowable Ripple: 0.5 dB 

Kaiser Filter Parameter β: 5.0, 

Window Length: 51 

For the realization of effective spectral analysis on 

signals under rough conditions, the selected wavelet 

transforms for this algorithm are Morlet and Daubechies. 

The registered signals of interest are 4G LTE, 5G NR, 

Wi-Fi 6, DVB-T2 and GPS, to be detected at a low SNR 

level of 1, -5, -12, -15, -21 dB. 

To evaluate the effectiveness of the proposed method, 

it is necessary to calculate the following indicators (Tables 

2-6): 
1. True Positive Rate (TPR): This metric shows how 

well the method identifies useful signals. 
2. Average Noise Level (ANL): This assesses the 

efficiency of filtering in reducing noise. 
3. Fading Attenuation Factor (FAF): This evaluates 

how well the method handles signal fading. 
4. Filtering Efficiency Factor (FEF): This evaluates 

the overall effectiveness of filtering through the application 

of multiple filters at different stages. 
5. False Positive Rate (FPR): This metric indicates 

how often the method incorrectly identifies a missing 

signal as present. It is crucial for assessing the reliability of 

the method and reducing false alarms. 
6. Processing Delay (PD): This is calculated to assess 

the speed of the method. 
7. Frequency Distortion (FD): This is a measure of the 

change in the signal's frequency after processing and is 

calculated to evaluate the preservation of the signal's 

frequency characteristics. 

 
 

TABLE 2. Calculation Results for 4G LTE. 

Parameter SNR = 1 SNR = -5 SNR = -12 SNR = -15 SNR = -21 

True Positive Rate 0.95 0.88 0.85 0.80 0.75 

Average Noise Level 0.10 0.11 0.12 0.14 0.15 

Fading Attenuation Factor 0.05 0.06 0.07 0.09 0.10 

Filtering Efficiency Factor 0.02 0.02 0.03 0.03 0.04 

False Positive Rate 0.01 0.01 0.02 0.02 0.03 

Processing Delay 0.5 s 0.5 s 0.6 s 0.7 s 0.7 s 

Frequency Distortion 0.1 0.12 0.15 0.18 0.2 

TABLE 3. Calculation Results for 5G NR. 

Parameter SNR = 1 SNR = -5 SNR = -12 SNR = -15 SNR = -21 

True Positive Rate 0.92 0.85 0.80 0.75 0.70 

Average Noise Level 0.11 0.12 0.13 0.14 0.16 

Fading Attenuation Factor 0.06 0.07 0.08 0.09 0.11 

Filtering Efficiency Factor 0.03 0.03 0.04 0.04 0.05 

False Positive Rate 0.01 0.02 0.03 0.03 0.04 

Processing Delay 0.5 s 0.5 s 0.6 s 0.7 s 0.8 s 

Frequency Distortion 0.1 0.13 0.16 0.19 0.22 

TABLE 4. Calculation Results for Wi-Fi 6. 

Parameter SNR = 1 SNR = -5 SNR = -12 SNR = -15 SNR = -21 

True Positive Rate 0.90 0.83 0.78 0.72 0.65 

Average Noise Level 0.10 0.11 0.13 0.15 0.17 

Fading Attenuation Factor 0.04 0.05 0.07 0.09 0.12 

Filtering Efficiency Factor 0.02 0.03 0.04 0.05 0.06 

False Positive Rate 0.02 0.02 0.03 0.04 0.05 

Processing Delay 0.4 s 0.5 s 0.6 s 0.8 s 0.9 s 

Frequency Distortion 0.1 0.12 0.14 0.18 0.25 
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TABLE 5. Calculation Results for DVB-T2. 

Parameter SNR = 1 SNR = -5 SNR = -12 SNR = -15 SNR = -21 

True Positive Rate 0.94 0.87 0.82 0.75 0.68 

Average Noise Level 0.09 0.11 0.12 0.14 0.18 

Fading Attenuation Factor 0.03 0.04 0.06 0.08 0.09 

Filtering Efficiency Factor 0.01 0.02 0.03 0.04 0.05 

False Positive Rate 0.01 0.02 0.02 0.03 0.04 

Processing Delay 0.3 s 0.4 s 0.5 s 0.7 s 0.8 s 

Frequency Distortion 0.1 0.12 0.15 0.18 0.2 

TABLE 6. Calculation Results for GPS. 

Parameter SNR = 1 SNR = -5 SNR = -12 SNR = -15 SNR = -21 

True Positive Rate 0.91 0.84 0.79 0.72 0.66 

Average Noise Level 0.11 0.12 0.14 0.16 0.19 

Fading Attenuation Factor 0.04 0.06 0.07 0.09 0.11 

Filtering Efficiency Factor 0.02 0.03 0.04 0.05 0.06 

False Positive Rate 0.02 0.02 0.03 0.04 0.05 

Processing Delay 0.4 s 0.5 s 0.6 s 0.8 s 0.9 s 

Frequency Distortion 0.1 0.12 0.14 0.18 0.22 
 

 

 

   

FIG. 2. Graphical Comparison of Signal Detection Efficiency Metrics. 
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FIG. 3 Impact of SNR Levels on Frequency Distortion (FD) for Signals. 

V.CONCLUSION 
The analysis of the performed computer simulations 

makes it possible to draw a few key conclusions regarding 

the developed method's effectiveness in monitoring the 

spectrum using wavelet transforms and Butterworth, 

Chebyshev, and Kaiser filters at different SNR conditions. 

Figures 2 and 3 give a clear pictorial representation of how 

changes in dynamics are performed on the metrics for 

signal types: TPR, ANL, FAF, FEF, FPR, PD, and FD.  

 5G NR: For 5G NR, it can be observed from Table 3 

that the TPR has been reduced with a reduction in SNR—

from 0.92 to 0.70 for SNR = −21 dB. The ANL increases 

with decreasing SNR—from 0.11 to 0.16—meaning that 

noise levels are rising. FAF and FPR increase with a lower 

SNR, indicating rising challenges in signal detection. In 

this case, the FEF gradually reduces, which signifies less 

and less efficacy in noise elimination, as SNR reduces. The 

Processing Delay (PD) increases because the detection 

signal processing gets more and more complex; on the 

other hand, Frequency Distortion (FD) increases to show 

more and more noise affecting frequency characteristics of 

the signal. 

 Wi-Fi 6: It can be noticed from Table 4 that for Wi-Fi 

6, TPR decreases with a decrease in SNR from 0.90 for 

SNR = 1 dB to 0.65 when SNR = -21 dB. ANL increases, 

suggesting an increased presence of noise in the system as 

SNR gets lower. Both FAF and FPR increase, suggesting 

increased complexity for detection. FEF decreases, 

implying reduced method capability to get rid of noise with 

SNR decrease. PD grows, meaning that it becomes larger 

and testifies to a longer processing time needed for signal 

analysis. At the same time, FD also increases, showing the 

increased influence of noise on the frequency 

characteristics of the signal. 

 DVB-T2: The TPR of DVB-T2, as seen in Table 5, 

decreases with SNR from 0.94 at SNR = 1 dB to 0.68 at 

SNR = -21 dB. ANL increases, clearly showing an increase 

in noise in the system. FAF increases; likewise, FPR, 

which shows that detection is tending to increase its 

complexity. FEF decreases; therefore, there is less 

efficiency in removing noise. The PD increases, due to 

increased time of processing, and FD due to increased 

noise in terms of magnitude increases the impact of noise 

on the frequency characteristics of the signal. 

 GPS: From Table 6, the TPR of GPS drops with 

reducing SNR, from 0.91 at SNR = 1 dB to 0.66 at SNR = 

-21 dB. ANL goes up, higher noise level for the system. 

Both FAF and FPR go up, which indicates difficulties in 

signal detection. FEF goes down, showing a lower 

efficiency in noise removal. PD increases and reflects 

longer times of processing, needed for the analysis of the 

signals; FD rises and means that noise impacts the 

frequency characteristics of the signal. 

By the results of the simulation, the spectrum 

monitoring method with the wavelet-transform-based 

Butterworth, Chebyshev, and Kaiser filters can be assumed 

to be variable in terms of the signal detection effectiveness, 

depending on the level of SNR. Substantial values of ANL 

with increasing negative FPR and frequency distortion for 

low levels of SNR show that there is a need for further 

improvement of the method to obtain constant performance 

in hard SNR conditions. 
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Метод спектрального моніторингу з використанням 
вейвлет-перетворень та фільтрації в умовах 
спотворення та завмирання частоти сигналу 
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АНОТАЦІЯ У статті розглянуто питання підвищення точності та надійності моніторингу спектру в когнітивних 
телекомунікаційних системах. З урахуванням динамічних умов радіочастотного середовища, основна увага приділена 
аналізу впливу завмирання та спотворення частоти сигналу на результати спектрального аналізу. Завмирання та 
спотворення можуть суттєво впливати на точність виявлення сигналів, що робить адаптивні методи і фільтри критично 
важливими для успішного виявлення змін у спектральному середовищі. Мета статті полягає в оцінці ефективності 
використання адаптивних методів і фільтрів, таких як вейвлет-перетворення, а також фільтрів Баттерворта, Чебишева і 
Кайзера, для покращення виявлення змін у спектральному середовищі при різних рівнях сигнал-шум (С/Ш). Дослідження 
охоплюють широкий спектр частот, зосереджуючи увагу на ключових технологіях, таких як 5G NR, Wi-Fi 6, DVB-T2 і GPS, що 
мають різні вимоги до точності та надійності сигналу. Метод моніторингу спектру, описаний у статті, дозволяє досягти 
високої точності виявлення сигналів у сприятливих умовах, коли С/Ш є високим. Проведені експерименти показали, що при 
значеннях С/Ш вище 1 дБ, показник точності виявлення сигналів (ПТВС) для всіх розглянутих технологій залишається на рівні 
0,90 і вище. Наприклад, для 5G NR ПТВС становить 0,92 при С/Ш = 1 дБ, тоді як для Wi-Fi 6 цей показник досягає 0,90. Однак, 
зі зниженням рівня С/Ш, ефективність методу поступово знижується. Для 5G NR ПТВС знижується до 0,70 при С/Ш = -21 дБ, 
що свідчить про значне зростання ймовірності хибного виявлення сигналів. Аналогічні результати спостерігаються для Wi-Fi 
6, де ПТВС знижується до 0,65, для DVB-T2 — до 0,68, і для GPS — до 0,66. Крім того, середній рівень шуму збільшується зі 
зниженням С/Ш, що додатково ускладнює процес точного виявлення сигналів, ілюструючи необхідність подальшого 
вдосконалення методів. Отримані результати підкреслюють важливість подальшого вдосконалення спектрального 
моніторингу, особливо в умовах низького С/Ш. Подальші дослідження повинні зосереджуватися на розробці нових або 
вдосконаленні існуючих адаптивних алгоритмів, здатних ефективно працювати в складних спектральних умовах, а також на 
дослідженні впливу інших типів фільтрації та перетворень. 

КЛЮЧОВІ СЛОВА вейвлет-перетворення, Марле Добеши, відношення сигнал/шум, фільтри Баттерворта, фільтри Чебишева. 
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