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ABSTRACT This article explores improving the accuracy and reliability of spectrum sensing methods within cognitive radio
networks. The primary focus is on how signal fading and frequency distortion influence the results of spectral analysis. These
issues can severely impact the precision of signal detection, making adaptive methods and filters indispensable for accurately
detecting changes in the spectral landscape. The purpose of the paper is to evaluate the effectiveness of various adaptive
methods and filters — such as wavelet transforms, along with Butterworth, Chebyshev, and Kaiser filters—in improving the
detection of changes within the spectral environment across different signal-to-noise ratio (SNR) levels. The research spans
a broad frequency range, concentrating on pivotal technologies like 5G NR, Wi-Fi 6, DVB-T2, and GPS, each having unique
requirements for signal precision and dependability. The spectrum sensing approach described in the article achieves high
signal detection accuracy under favorable conditions, particularly when the SNR is strong. Experiments revealed that with
SNR values above 1 dB, the signal detection accuracy (True Positive Rate, or TPR) for all technologies examined remains at or
above 0.90. For instance, the TPR for 5G NR is 0.92 at an SNR of 1 dB, while for Wi-Fi 6, it stands at 0.90. However, the
effectiveness of the method declines as the SNR decreases. For example, with 5G NR, the TPR drops to 0.70 at an SNR of -21
dB, indicating a heightened probability of false signal detection. Similar patterns are observed with Wi-Fi 6, where the TPR
falls to 0.65, with DVB-T2 to 0.68, and GPS to 0.66. Additionally, the average noise level rises as SNR diminishes, making
accurate signal detection increasingly challenging and emphasizing the need for further refinement of these methods. The
findings underscore the need for ongoing advancements in spectrum monitoring, especially under low SNR conditions. Future
research should prioritize developing new or refining existing adaptive algorithms capable of operating effectively in complex
spectral environments. Exploring the impact of other filtering and transformation methods could also yield valuable insights.
Moreover, the incorporation of machine learning techniques offers a promising path for boosting the adaptability and
accuracy of spectrum monitoring in real-world telecommunication systems.
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I. INTRODUCTION

he paradigm of cognitive radio networks must
T embed effective sensing and at the same time be

responsive to the dynamism in the environment.
These are actively accessed parts of the radio spectrum,
where dynamics are important, through accurate spectrum
sensing, for the purposes of reliable communication. There
are many problems with spectrum sensing, especially in
conditions where signal fading and frequency distortions
are common.

Effective spectrum sensing determines how well a
network could detect and access available frequency
bands. The signal-to-noise ratio (SNR), in general, is
mainly critical in determining the extent of signal detection
performance realized with respect to fluctuating SNR in
cognitive radio systems. High SNR performance ensures
robust detection of the signal so that the network can attain
the said signal, thus allowing the network to operate and
access the spectrum effectively. But, with the decrease in
SNR, the probability of false detection increases; this will
cause interference with communications, eventually
lowering the network efficiency.

In response to these challenges, this paper investigates
the appropriateness of adaptive methods and filters in

increasing the accuracy of spectrum sensing. The research
is primarily concerned with wavelet transforms and
Butterworth, Chebyshev, and Kaiser filters, how they
perform in varying frequency ranges and technologies: 5G
NR, Wi-Fi 6, DVB-T2, and GPS. Since all these
technologies necessitate the ultimate highest possible
precision, reliability in the filtering method to be selected,
this has been major criteria in selection.

The results of this article suggest that research on the
enhancement of spectrum sensing methods must be
continued in the future, especially under low SNR
conditions. Further development of the concept of
cognitive radio networks warrants an upgrade and
enhancement of adaptive algorithms so that the
communication is kept reliable in ever-changing spectrum
environments.

Il. REVIEW OF THE LITERATURE

Reference [1] considers application wavelet transforms
in the analysis of digital signals, thus establishing a
foundation for using wavelet-based techniques in the
spectrum sensing process. The research is focused on the
efficiency of wavelet transforms in complicated signal
environments, which is a crucial factor for effective
spectral analysis. This research leads to understand how
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wavelet-based methods can improve signal detection and
processing under varied and difficult conditions.

The cited study [2] detailed methods for localizing
unauthorized sources of radiation and noted that,
fundamentally, accurate signal processing is important for
preserving the integrity of cognitive radio networks. The
ideas considered in their work are close to a more general
framework that aims at attaining accuracy in spectrum
sensing by controlling the interference and effects of
unauthorized signals.

The paper [3] focuses on the use of adaptive algorithms
with cognitive radio networks and finds that, in general, the
use of adaptive methods for signal processing greatly
improves the reliability and performance of the mentioned
networks. Their findings support the necessity of employing
adaptable filters and algorithms, particularly in
environments with fluctuating signal-to-noise ratios (SNRs).

Spectrum sensing techniques in cognitive radio networks
have been researched and recently reviewed in various
works [4-6]. This includes information criteria in spectrum
monitoring; Fast Fourier Transform in spectrum analysis;
and signal robustness studies in wireless access systems. All
these underline the importance of adaptive filtering and
signal processing methods to ensure stably reliable sensing
of the spectrum under diversified network conditions. While
the results from these studies have been largely positive, a
literature gap exists in terms of the basic rationale regarding
the selection of filter techniques to maximize spectrum
sensing efficiency in cognitive radio networks.

Ill. THE MATERIALS AND METHODS

Steps of the Adaptive Algorithm for Spectrum
Monitoring in Conditions of Distortion and Fading Using
Variable Time Segments, Wavelet Transform, and
Butterworth, Chebyshev, and Kaiser Filters (Figure 1):

1. Signal Acquisition: The goal of this stage is to
ensure accurate signal collection for further analysis.

1.1. Signal  Source Identification: Specialized
equipment is used to reduce noise levels. The collected
signal is represented as x(t).

1.2. Receiver Selection: Receivers are chosen based on
the characteristics of the signal and environmental
conditions, requiring high sensitivity S and the ability to
operate in environments with high levels of noise and
interference I. Let Pr represent the received signal power;
then the condition Pr>S+I must be met.

1.3. Environmental Conditions Analysis: This
involves analyzing potential sources of interference, noise
levels, and other factors that affect signal quality. Moving
objects and weather conditions can cause signal fading and

distortion. If H(t) is the fading coefficient, then
y(O)=H() x(t).
1.4. Signal Recording: The collected signal is

recorded and stored for further analysis. If d(t) is the
recorded signal, then d(t)=y(t)+n(t), where n(t) is the
measurement noise.

1.5. Accounting for Fading and Distortion: The
overall signal model, taking into account fading and
distortion, is represented as follows:

y(®)=H=x(t) - exp(j2t+j0)+V(t) D
For modeling fading, the Rayleigh distribution is used,
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considering g3as the variance of the channel attenuation
coefficient.
pu() = Zexp (22) @
oh 20p

2. Signal Sampling. The signal is divided into short
segments (frames), allowing real-time spectral analysis and
enabling the tracking of changes in the spectral
composition of the signal over time.

2.1. Signal Segmentation: The signal is divided into
short frames of duration T. These frames may overlap to
reduce information loss at the edges of the frames.

2.2. Weighted Multiplication: Each frame is
subjected to weighted coefficients (a window function) to
minimize discretization effects and ensure smoother
transitions between frames. This is expressed by the
formula:

v:(m)=x,(n)-wn)n=0,1,... . N—1 3)

3. Signal Preprocessing: remove noise and enhance
the signal quality for subsequent spectral analysis.
Modified Butterworth filters are used for this purpose,
offering maximum smoothness in the frequency response.
This reduces signal distortion and minimizes the filtering
impact on the useful signal [7, 8].

Analog Prototype of the Modified Butterworth Filter:

Ho(s) = —————"H, - exp(j6), @)

2m
1+(S+AS)
wc

where s is the complex variable; As is the frequency shift;
wy is the cutoff frequency; m is the filter order.

For the Digital Butterworth Filter, the analog prototype
is transformed into digital form using bilinear
transformation of the zvariable [8]:

21-z71
5= T14z-1' (5)
where T is the sampling period.

This results in a low-pass Butterworth filter [8] with
order m, accounting for the effects of fading H, -
exp(jo)distortion exp(j2t+j0) and noise V(t), represented
as:

B(z)
Hy(z) = T;.

Ho - exp(j(2t+6+0))+V(D),  (6)
B(z) _ Yo axz7k
A(z) Y brzk

4. Recurrent Time Segmentation: involves re-
segmenting the signal while accounting for dynamic
changes in the spectral environment as well as the effects
of fading and distortion.

4.1. Adaptive Segmentation: The signal is divided
into segments of varying durations Ti, allowing for a more
precise consideration of changes in the signal's
characteristics. For each segment, the current values of the
fading coefficient H(t) and frequency distortion Q(z) are
calculated.

4.2. Frame Correction: Each frame is corrected to
account for fading and distortion. The correction formula
is as follows:

v;(t)=H;(t)x(t) - exp (j2;¢t), @)
where y;(t)is the corrected signal for the i-th frame,
H,(t)is the fading coefficient for the i-th frame, and ;is
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the frequency distortion for the i-th frame.

4.3. Recursive Filtering: Adaptive filtering is applied
to each segment, considering the current values of fading
and distortion, which helps to reduce the impact of these
factors on signal quality. For example, an adaptive
Butterworth filter can be used for each segment, with
parameters that change according to the values of H;(t)and
Qi. In cases where high precision in the passband is
required, a Chebyshev filter may be appropriate. If
minimizing signal delay is critical, a Kaiser filter can be
employed [1, 9].

4.4. Analysis and Integration of Results: The results
of processing each frame are integrated to obtain an overall
result. This integration allows for constructing a
comprehensive picture of spectral changes in the signal
over time.

5. Wavelet Transform (WT): The wavelet transform
decomposes the signal into its constituent frequencies,
revealing the amplitude and phase of each frequency in the
spectrum, allowing for a detailed analysis of the time-
frequency characteristics of the signal. The wavelet
transform, considering distortions and fading, is calculated
using the following formula [10-12]:
wr(e.f)= [ H-x[zjl-exp[;|gr+s+9:l]+v|r:|¢*-(“_f)-dr

e a , (8)
where 7 is the scaling parameter, a is the shift parameter,
Y(t) is the mother wavelet function, and (t)is the
complex conjugate of the wavelet function.

6. Filtering WT Results: At this stage, the wavelet
transform results undergo additional filtering using
Chebyshev filters to improve resolution and reduce
interchannel interference. The power of the frame and its
spectral density are described by the formula [1, 9, 12]:

P(f) = IWT(LD) (©)

7. Calculation of Power Spectral Density (PSD) of T
Frames: This step is necessary to obtain the information
about the distribution of signal power in the frequency
domain over a prolonged period. The PSD Prindicates how
the signal power is distributed across frequencies

Pr = 23053 B(f). (10)

8. Calculation of Average Spectral Power, which
provides an overall assessment of the signal's power in the
frequency domain. The formula for calculating it is:

Pavg =% ?I:_Olpf- (11)

9. Calculation of the Decision Statistic r(k), which is
resistant to background noise levels, is calculated to
identify signals that exceed the noise level. This enables
the identification and analysis of useful signals in noisy
conditions [11]

r(k) = L2, (12)
avg

10. Threshold Value Calculation: determines the
threshold level to distinguish between useful signals and
interference, i.e., to detect the presence or absence of a
signal at a specific frequency. It is calculated as [11]:

A== T r (k). (13)

11. Spectrum Analysis: The results of spectrum
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analysis are used to determine the frequency components
of the signal. At this stage, Kaiser adaptive filters are
effectively used to fine-tune the filtering parameters and
increase analysis accuracy [3]. The formulas are:

— Kaiser window function:

(14)

— Modified Bessel function of the first kind (zero-order):

Io() = ZiZo ((k)) (15)

where w(n) is the value of the Kaiser window at point n,
Iyis the modified Bessel function of the first kind (zero-
order), p is the window shape parameter, and N is the
window length.

Signal preprocessing
Signal acquisition Butterworth filtering
XM Ha(2) =22, -exp(jae + 0.+ €)) + ¥(O),
Signal power lower
than interference
Check for interference level
P<S+1

Signal power higher than interference

Recurrent time segmentation
Frame correction

Yi(t) = Hi (£) - x(r) - exp (i)

Is the signal segmented?

Signal processing

d(t) = y(t) + n(t)

‘Adaptive processing and corraction
H = Hy - exp(j0)

0=0+A0+O
V(t) ~ N(0,a7%)

No, not segmented

Signal analysis. Wavelet transformation

WT ()= [ H-x(t)-exp(j(t +6 +8)) + V() ¢ (;] -de

Spectral analysis and signal processing
Chebyshev filters, Py P(f), P, . r(k), threshold calculation

Kaiser filters

Detected anomalies Monitoring and anomaly detection
Reotar = Mkex r(k)

No anomalies

—

Verification and decision-making ]

FIG. 1. Adaptive Algorithm for Spectrum Monitoring Using
Wavelet Transform and Filtering.

12. Monitoring and Anomaly Detection: This stage
includes accounting for modern spectrum monitoring
conditions, such as high dynamics of changes, multiple
signal sources, and high levels of interference. Based on
the WT results, threshold values for frequency amplitudes
are established, and spectrum changes are monitored.
Comparing the current spectrum with the baseline allows
for accurate detection of unusual events or anomalies in the
spectrum. The decision conditions are:

r(k)>a = channel is occupied, (16)
r(k)<a = channel is free,
or
P¢(k) — a-P,y > 0 = channel is occupied,

Pr(k) — aPyyg < 0 = channel is free.

(17)

After analyzing the detected anomalies in frequency
data, a decision is made on further actions, which may
include adjusting spectrum monitoring settings, re-
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collecting data, excluding anomalies from the analysis, or
taking measures to mitigate the consequences.

IV. EXPERIMENTS

To verify the accuracy of the developed algorithm of
spectrum monitoring under distorted and faded conditions,
with the use of time segments having various lengths, a
wavelet transform, Butterworth, Chebyshev, and Kaiser
filters, a software realization was made within the Python
programming language. The input data for the experiments
are given in Table 1.

TABLE 1. Input Data.

Parameter Value
Signal Types 4G LTE, 5G NR, Wi-Fi 6,
DVB-T2, GPS

Sensitivity, dBm

SNR, dB

Channel Type

Number of Primary Users
Probability of False Alarm
FFT Size (N)

Number of Frames (T)
Wavelet Transform
Butterworth Filter

Chebyshev Filter

Kaiser Filter

-94, -116, -107, -95, -100
1,-5,-12,-15, -21
AWGN

50

0.005

512

250

Morlet or Daubechies
Cutoff Frequency: 0.1,
Filter Order: 4

Filter Order: 5,
Allowable Ripple: 0.5 dB
Parameter f: 5.0,
Window Length: 51

For the realization of effective spectral analysis on
signals under rough conditions, the selected wavelet
transforms for this algorithm are Morlet and Daubechies.

The registered signals of interest are 4G LTE, 5G NR,
Wi-Fi 6, DVB-T2 and GPS, to be detected at a low SNR
level of 1, -5, -12, -15, -21 dB.

To evaluate the effectiveness of the proposed method,
it is necessary to calculate the following indicators (Tables
2-6):

1. True Positive Rate (TPR): This metric shows how
well the method identifies useful signals.

2. Average Noise Level (ANL): This assesses the
efficiency of filtering in reducing noise.

3. Fading Attenuation Factor (FAF): This evaluates
how well the method handles signal fading.

4. Filtering Efficiency Factor (FEF): This evaluates
the overall effectiveness of filtering through the application
of multiple filters at different stages.

5. False Positive Rate (FPR): This metric indicates
how often the method incorrectly identifies a missing
signal as present. It is crucial for assessing the reliability of
the method and reducing false alarms.

6. Processing Delay (PD): This is calculated to assess
the speed of the method.

7. Frequency Distortion (FD): This is a measure of the
change in the signal's frequency after processing and is
calculated to evaluate the preservation of the signal's
frequency characteristics.

TABLE 2. Calculation Results for 4G LTE.
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Parameter SNR=1 SNR=-5 SNR=-12 SNR=-15 SNR=-21
True Positive Rate 0.95 0.88 0.85 0.80 0.75
Average Noise Level 0.10 0.11 0.12 0.14 0.15
Fading Attenuation Factor 0.05 0.06 0.07 0.09 0.10
Filtering Efficiency Factor 0.02 0.02 0.03 0.03 0.04
False Positive Rate 0.01 0.01 0.02 0.02 0.03
Processing Delay 05s 05s 06s 0.7s 0.7s
Frequency Distortion 0.1 0.12 0.15 0.18 0.2

TABLE 3. Calculation Results for 5G NR.

Parameter SNR=1 SNR=-5 SNR=-12 SNR=-15 SNR=-21
True Positive Rate 0.92 0.85 0.80 0.75 0.70
Average Noise Level 0.11 0.12 0.13 0.14 0.16
Fading Attenuation Factor 0.06 0.07 0.08 0.09 0.11
Filtering Efficiency Factor 0.03 0.03 0.04 0.04 0.05
False Positive Rate 0.01 0.02 0.03 0.03 0.04
Processing Delay 05s 05s 06s 0.7s 08s
Frequency Distortion 0.1 0.13 0.16 0.19 0.22

TABLE 4. Calculation Results for Wi-Fi 6.

Parameter SNR=1 SNR=-5 SNR=-12 SNR=-15 SNR=-21
True Positive Rate 0.90 0.83 0.78 0.72 0.65
Average Noise Level 0.10 0.11 0.13 0.15 0.17
Fading Attenuation Factor 0.04 0.05 0.07 0.09 0.12
Filtering Efficiency Factor 0.02 0.03 0.04 0.05 0.06
False Positive Rate 0.02 0.02 0.03 0.04 0.05
Processing Delay 04s 05s 06s 0.8s 09s
Frequency Distortion 0.1 0.12 0.14 0.18 0.25

4
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TABLE 5. Calculation Results for DVB-T2.

Parameter SNR=1 SNR=-5 SNR=-12 SNR=-15 SNR=-21
True Positive Rate 0.94 0.87 0.82 0.75 0.68
Average Noise Level 0.09 0.11 0.12 0.14 0.18
Fading Attenuation Factor 0.03 0.04 0.06 0.08 0.09
Filtering Efficiency Factor 0.01 0.02 0.03 0.04 0.05
False Positive Rate 0.01 0.02 0.02 0.03 0.04
Processing Delay 0.3s 04s 05s 0.7s 0.8s
Frequency Distortion 0.1 0.12 0.15 0.18 0.2

TABLE 6. Calculation Results for GPS.

Parameter SNR=1 SNR=-5 SNR=-12 SNR=-15 SNR=-21
True Positive Rate 0.91 0.84 0.79 0.72 0.66
Average Noise Level 0.11 0.12 0.14 0.16 0.19
Fading Attenuation Factor 0.04 0.06 0.07 0.09 0.11
Filtering Efficiency Factor 0.02 0.03 0.04 0.05 0.06
False Positive Rate 0.02 0.02 0.03 0.04 0.05
Processing Delay 04s 05s 0.6s 0.8s 09s
Frequency Distortion 0.1 0.12 0.14 0.18 0.22

TPR for different signals ANL for different signals
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—#— 5G NR —#— 5G NR
—o— Wi-Fi 6 018 —e— Wi-Fi6
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—8— GPS
——- Threshold
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0.85
o
& o0.80 Z 014
0.75 8= mm ol = e e e
0.12 === s T g S ———————————|
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0.10
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FIG. 2. Graphical Comparison of Signal Detection Efficiency Metrics.
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FD for different signals at various SNR levels

—o— 4G LTE
5G NR
—o— Wi-Fi6
—e— DVBT2
—o— GPS

-20 -15

-10

SNR, dB

FIG. 3 Impact of SNR Levels on Frequency Distortion (FD) for Signals.

V.CONCLUSION

The analysis of the performed computer simulations
makes it possible to draw a few key conclusions regarding
the developed method's effectiveness in monitoring the
spectrum using wavelet transforms and Butterworth,
Chebyshev, and Kaiser filters at different SNR conditions.
Figures 2 and 3 give a clear pictorial representation of how
changes in dynamics are performed on the metrics for
signal types: TPR, ANL, FAF, FEF, FPR, PD, and FD.

5G NR: For 5G NR, it can be observed from Table 3
that the TPR has been reduced with a reduction in SNR—
from 0.92 to 0.70 for SNR = —21 dB. The ANL increases
with decreasing SNR—from 0.11 to 0.16—meaning that
noise levels are rising. FAF and FPR increase with a lower
SNR, indicating rising challenges in signal detection. In
this case, the FEF gradually reduces, which signifies less
and less efficacy in noise elimination, as SNR reduces. The
Processing Delay (PD) increases because the detection
signal processing gets more and more complex; on the
other hand, Frequency Distortion (FD) increases to show
more and more noise affecting frequency characteristics of
the signal.

Wi-Fi 6: It can be noticed from Table 4 that for Wi-Fi
6, TPR decreases with a decrease in SNR from 0.90 for
SNR =1 dB to 0.65 when SNR = -21 dB. ANL increases,
suggesting an increased presence of noise in the system as
SNR gets lower. Both FAF and FPR increase, suggesting
increased complexity for detection. FEF decreases,
implying reduced method capability to get rid of noise with
SNR decrease. PD grows, meaning that it becomes larger
and testifies to a longer processing time needed for signal
analysis. At the same time, FD also increases, showing the
increased influence of noise on the frequency
characteristics of the signal.

DVB-T2: The TPR of DVB-T2, as seen in Table 5,
decreases with SNR from 0.94 at SNR = 1 dB to 0.68 at
SNR =-21 dB. ANL increases, clearly showing an increase
in noise in the system. FAF increases; likewise, FPR,
which shows that detection is tending to increase its
complexity. FEF decreases; therefore, there is less
efficiency in removing noise. The PD increases, due to
increased time of processing, and FD due to increased
noise in terms of magnitude increases the impact of noise
on the frequency characteristics of the signal.

GPS: From Table 6, the TPR of GPS drops with
reducing SNR, from 0.91 at SNR =1 dB t0 0.66 at SNR =
-21 dB. ANL goes up, higher noise level for the system.
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Both FAF and FPR go up, which indicates difficulties in
signal detection. FEF goes down, showing a lower
efficiency in noise removal. PD increases and reflects
longer times of processing, needed for the analysis of the
signals; FD rises and means that noise impacts the
frequency characteristics of the signal.

By the results of the simulation, the spectrum
monitoring method with the wavelet-transform-based
Butterworth, Chebyshev, and Kaiser filters can be assumed
to be variable in terms of the signal detection effectiveness,
depending on the level of SNR. Substantial values of ANL
with increasing negative FPR and frequency distortion for
low levels of SNR show that there is a need for further
improvement of the method to obtain constant performance
in hard SNR conditions.

AUTHOR CONTRIBUTIONS

I.S., V.L. — writing (original
conceptualization, methodology, investigation; LS.
methodology, investigation, writing (review and editing).

COMPETING INTERESTS
The authors declare no conflict of interest.

REFERENCES

A. O. Anosov, M. M. Procenko, O. L. Dubynko, and M.
Y. Pavlynko, "Application of wavelet transform for
digital signal analysis," Telecommunication Systems, no.
33, pp. 38-42, 2018.

N. I. Bartkiv, "Methods and localization of unauthorized
emission sources," Information Security, no. 1, pp. 68-73,
2009.

I. M. Baranovska, M. M. Melnyk, and V. V. Koval,
"Increasing the efficiency of cognitive radio networks
based on adaptive signal processing algorithms,"
Telecommunication Systems, no. 5, pp. 91-98, 2022.

S. I. Bevs and Y. V. Melnyk, "Optimization of cognitive
radio networks taking into account dynamic changes in the
environment,"  Bulletin of NTUU «KPl», Series
«Radiotechniquey, vol. 4, pp. 45-50, 2020.

V. P. Lysechko and I. I. Soproniuk, "Spectral monitoring
method in cognitive radio networks based on FFT," Bulletin
of NTUU «KPI», Series «Radiotechniquey, vol. 16, pp. 173-
180, 2011.

V. P. Lysechko, I. I. Soproniuk, Y. H. Stepanenko, and N.
O. Briuzgina, "Study of spectrum analysis methods in
cognitive radio networks," Collection of Scientific Works,
Kharkiv: HUPS named after I. Kozheduba, vol. 3 (25), pp.
137-145, 2010.

[1]

[2]

(3]

(4]

(5]

(6]

draft preparation),



SISIOT Journal | journals.chnu.edu.ua/sisiot

[71 V. M. Frolov and A. M. Kotlyar, "Adaptive signal
processing algorithms in conditions of noise and
interference,” Radioelectronics, no. 3, pp. 44-51, 2021.

[8] S. Haykin, "Cognitive radio: brain-empowered wireless
communications," |IEEE Journal on Selected Areas in
Communications, vol. 23, no. 2, pp. 201-220, 2005.

[9 S. V. Indyk and V. P. Lysechko, "Study of ensemble
properties of complex signals obtained by frequency
filtering of pseudorandom sequences with low interaction
in the time domain,"” Collection of Scientific Works,

Volodymyr Lysechko

Dr Sc. Professor, Scientific Center of the
Air Force Ivan Kozhedub Kharkov
National University of Air Forces,
Kharkiv, Ukraine. Research interests
include modeling of wireless intelligent
telecommunication networks, improving
immunity, methods of managing
complex structured data in distributed
telecommunication  systems, spectral
monitoring, neural networks, computer
modeling, organization of databases,

Kharkiv: HUPS named aftel’ . KOZheduba, VOI. 4 (66), pp _— innovative telecommunication
46-50, 2020. technologies in NATO standards.
[10] V. Havryliuk, "Audio frequency track circuits monitoring ORCID ID: 0000-0002-1520-9515
based on wavelet transform and artificial neural network
classifier,” in 2019 IEEE 2nd Ukraine Conference on Ivan Soproniuk
Electrical and Computer Engineering (UKRCON). A PhD  student, Department  of
[11] 1. Saiapina, M. Babaiev, and O. Ananieva, "Reducing noise _ Transport Communication,
influence on an audio frequency track circuit,” MATEC Web ‘ ) Ukrainian State University of Railway
of Conferences, 2019. | R = >‘ Transport, Kharkiv, Ukraine. Research
[12] M. M. Procenko, "Methodology for selecting a wavelet = Interests: modeling of ensembles of

- complex signals, cognitive radio
, - networks, artificial intelligence and
ke U i telecommunications

et ; j% ORCID ID: 0009-0006-2831-0790

function for digital signal processing," Journal of ZSTU, no. p
49, pp. 97-100, 2009.

MeTtopa, cnekTpanbHOro MOHITOPUHIY 3 BUKOPUCTAHHAM
BeMBneT-nepeTBopeHb Ta pinbTpauii B ymoBax
CNOTBOPEHHA Ta 3aBMMUPAHHA YaCTOTU CUTHaNy

Bonoaumup Jinceuko™" ta IsaH ConpoHIoKk?

'HaykoBwii LeHTp MOoBITPAHMX CMA XapKiBCbKOrO HaLioOHabHOTO YHIBEPCUTETY NOBITPAHMX CUA iMeHi IBaHa Koskeay6a, Xapkis, YkpaiHa
2 Kadeapa TpaHCMOPTHOrO 38’A3Ky YKPaiHCbKOro AepKaBHOro yHiBEPCUTETY 3a1i3HMYHOro TPaHCNOpPTY, XapKis, YkpaiHa

*ABTOp-KOpecnoHaeHT (EnekTpoHHa agpeca: lysechkov@ukr.net)

AHOTALIA Y cTaTTi po3rnsHYTO MMTAHHA NiABMLLEHHA TOYHOCTI Ta HaAiMHOCTI MOHITOPUHIY CMEKTPY B KOTHITUBHUX
TeNIeKOMYHIKaUIMHUX cucTemax. 3 ypaxyBaHHAM AMHAMIYHMX YMOB PafiovacTOTHOIO CepefoBuMLLA, OCHOBHA yBara mpuaineHa
aHanisy BM/AMBY 3aBMMPaHHA Ta CMOTBOPEHHA 4YaCTOTWM CUFHaAYy Ha Pe3ynbTaTu CMEeKTPasIbHOTO aHanisy. 3aBMUPaHHA Ta
CNOTBOPEHHA MOXYTb CYTTEBO BM/IMBATWU Ha TOYHICTb BUAB/IEHHA CUIHANIB, WO POBUTL aganTuBHI MeToau i GiNbTpU KPUTUYHO
BaXK/IMBMMW A1A YCMILUHOTO BUABNEHHA 3MiH Yy CMEKTpasbHOMY cepeoBuul. MeTa cTatTi nmonarae B OUiHLi edeKTUBHOCTI
BMKOPWUCTaHHA afanTUBHUX MeTOAiB i inbTpiB, TaKMX AK BeWBIET-NEepPeTBOPEHHS, a TakoXK ¢inbTpis BatrepBopTta, Yebuwesa i
Kaii3epa, A19 MOKpaLeHHs BUABIEHHSA 3MiH Y CMEKTPasIbHOMY CepefloBULL MPU Pi3HMX piBHAX curHan-wym (C/LU). JocnigskeHHs
OXONANIOKOTb LMPOKMIM CNEKTP YACTOT, 30CEPEXYOUM YBary Ha KAOYOBMX TEXHOAOTIAX, TakMX AK 5G NR, Wi-Fi 6, DVB-T2 i GPS, wo
MatoTb Pi3Hi BUMOTM [0 TOYHOCTI Ta HaAiMHOCTI curHany. MeTos, MOHITOPUHIY CNEKTpY, ONUCaHWIA Yy CTaTTi, A 03BOJIAE AOCATTU
BWCOKOI TOYHOCTi BUAIB/IEHHA CUTHANIB Y CMIPUATIMBUX YMOBaX, Konu C/LLl € BUCOKMM. MpoBeAeHi eKCneprMeHTH NoKasasu, Lo npu
3HauveHHax C/LU suue 1 aB, NOKa3HUK TOYHOCTI BUABAEHHS curHanis (MTBC) ana BCiX pO3rNsiHYTUX TEXHO/IONM 3a/IMLLIAETCA Ha PiBHI
0,90 i BuLLe. Hanpuknag, ana 5G NR MTBC craHosuTb 0,92 npu C/LU = 1 4B, Toai Ak g1 Wi-Fi 6 ueit nokasHuk gocarae 0,90. OgHak,
3i 3HMKeHHAM piBHA C/LL, epeKTMBHICTL MeToAy NOCTYNoBO 3HMMKYETbCA. 15 5G NR MTBC 3HMKyeTbea Ao 0,70 npwu C/LU = -21 ab,
LLLO CBiAYMTb NPO 3HAYHEe 3POCTaHHA MMOBIPHOCTI XMOHOTO BUABNEHHA CUrHANIB. AHANOTIYHI pe3ynbTaTh cnocTepiratoTbea oA Wi-Fi
6, fe MTBC 3HMKyeTbea ao 0,65, gna DVB-T2 — no 0,68, i ana GPS — go 0,66. Kpim Toro, cepeaHili piBeHb Wymy 36inblUy€eTbCs 3i
3HMKeHHAM C/LL, o [0AATKOBO YCKI3AHIOE MPOLEC TOYHOrO BUABMAEHHA CWUrHaAIB, iNHOCTPYHOUM HEOBXiAHICTb MOAANbLIOro
BAOCKOHaNEeHHA meTodiB. OTpMMaHi pe3ynbTaTi MiAKPEC/oTb BaXK/AMBICTb MNOAANBLIOTO BAOCKOHANEHHA CMEKTPa/NbHOro
MOHITOPUHTY, 0c06/1MBO B ymoBax HM3bKoro C/LL. Moaanblui AocAiaKeHHA NMOBMHHI 30cepeasKyBaTvca Ha po3pobui HoBux abo
BA,OCKOHA/IEHHI ICHYIOYMX 3AaNTUBHUX aNTOPUTMIB, 34aTHUX eDEKTUBHO NPALIOBATH B CKNAAAHWUX CNEKTPANbHMX YMOBAX, @ TAKOX Ha
OO0CNiAKeHHI BAMBY iHWMX TUNiB GinbTpaL,ii Ta nepeTBopeHb.

K/IKOYOBI C/I0BA seliBneT-nepetsopeHHs, Mapne [obeluw, BigHoweHH: curHan/wym, dinbTpu batrepsopta, Ginbtpn Yebuiuesa.
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