

p-ISSN 2786-8443, e-ISSN 2786-8451, 01004(6) |Yuriy Fedkovych Chernivtsi National University|www.chnu.edu.ua

2024 Vol 2, No 1

https://doi.org/10.31861/sisiot2024.1.01004

Received 20 June 2024; revised 29 August 2024; accepted 30 August 2024; published 30 August 2024

Research the Level of Chaotic and Reliability in Webcam-
generated Random Number Sequences

Rostyslav Diachuk, Yuriy Dobrovolsky, Dmytro Hanzhelo, Heorhii Prokhorov* and Denis Trembach

Software Engineering Department, Yuriy Fedkovych Chernivtsi National University, Chernivtsi, Ukraine

*Corresponding author (E-mail: g.prokhorov@chnu.edu.ua)

ABSTRACT Engineering and software solutions in the sphere of software engineering, in particular cryptography, constantly
require the use of random sequences in their algorithms. Usually, standard methods of frameworks, software platforms,
libraries and programming languages do not provide the necessary level of randomness of generated number sequences.
Basically, the randomness of software generators of random sequences is based on a value of a certain system parameter,
for example, the value of the current date and time. It is obvious that with simple cyber-attacks it is possible to put the crypto-
resistance of the system at risk. To solve this problem, the property of the webcam to generate the same image from a state
frame is used. It is shown that the fact of changing values of illumination created by pixels differs by at least 63% for two
consecutive frames 100 milliseconds gap in complete darkness, the level of the avalanche effect exceeds the crypto-resistance
requirement by 13%. Thus, we can talk about a high level of chaos and randomness of the generated numerical sequences.
Frame generation was carried out both in complete darkness with an illumination of 10-4 lux, and in a uniformly illuminated
(200 lux) white surface. Testing the camera under extreme conditions gives a complete picture of the unpredictability and
chaos in the generation of random sequences. It is hypothesized that this approach theoretically allows a generation of
random number sequences at a speed of 1.25 Gbit/s, and a mixed software-hardware solution is able to provide up to
10 Gbit/s. The approach built on this property of a webcam can provide a way to solve the problem of designing an affordable
low-cost, crypto-resistant high-speed hardware random number generator in laboratory conditions without the involvement
of a special equipment.

KEYWORDS software engineering, chaos, crypto-resistance, software reliability, random number generator.

I. INTRODUCTION

t the current level of the development of information

technologies the issues of supporting the protection

of the vital interests of a human, a state and the

whole society, the national interests of Ukraine in

cyberspace from the point of view of cyber security are of

crucial importance [1].

One of the component methods of cyber security based

on software engineering is the generation of random

sequences – one of the mandatory elements of guaranteeing

cyber security of data. The computer for generation can use

as some of its own pseudo-random value, for example, the

amount of used/free stack/heap memory or the current time

value. So are data from peripheral devices – USB,

Keyboard, Mouse and many other sources, called external

sources of entropy.

These numbers are not overall random, because they

have a predictable nature of changes. In order to transform

such a set of numbers into a really random set,

cryptotransformations can be applied to them, for example,

cellular automata [2-5] to get uniform distribution of

random values from unevenly distributed ones of the chaos

source. The resulting number sets are declared as pseudo-

random ones, because they are not random in fact, but

deterministically produced from entropy. A modern

crypto-algorithm, encrypting data, produces ciphertexts

that should not statistically distinguish from a trully

random sequence. Namely, so that for the production of

random sequences it is possible to take a source of entropy,

which ensures satisfactory level of unpredictability and

randomness of values even in a short range.

Generated random number sequences are widely used

in some secured connections in various network

communications, for producing crypto keys, establishing

load balance, control of integrity, and for some other

applications [6].

Thus, from the point of view of software engineering,

there are relevant works devoted to the investigation of

new approaches to the generation of random sequences at

the hardware level.

II. ANALYSIS OF CURRENT LITERARY DATA AND
FORMULATION OF THE PROBLEM

Three approaches are used to generate random

numbers.

The first approach – a software one – is based on

specialized mathematical algorithms of software

engineering. Unfortunately, software generators are

somewhat predictable. Mathematical proofs of

unsatisfactory cryptoresistance of pseudorandom

sequences are given in [7]. The pseudorandom sequence

generation algorithm is publicly available, for instance, for

the Java language version 17 [8], which creates a

theoretical possibility to crash the encryption algorithm.

And in the publication [9], the author describes the hacking

process in detail, although with the help of huge computing

power. However, with the development of computing

power, for example, quantum computing [10], where the

A

2
Vol 2, No 1, Paper 01004, pp. 1-6 (2024)

SISIOT Journal | journals.chnu.edu.ua/sisiot

high speed of calculations inclines the possibility of an

attack to the practical plane. In December 2022, a

publication by a group of Chinese scientists appeared,

which demonstrated the possibility of breaking long RSA

keys using modern quantum computers. Work [11]

describes the first ever hacking of a 48-bit key.

Thus, it can be said that the software method of

generating random numbers is not completely crypto-

resistant.

The second approach – hardware – is related to the

construction and usage of special devices that use some

physical sources of chaos. For example, in [12], a beta

radiation counter is used to generate random values, which

makes relevant research dependent on additional

equipment. In works [13, 14], the authors use the noise of

an analog video camera, but subsequent digitization of the

video signal reduces the processing speed to low level.

These approaches, although completely crypto-

resistant, require additional expensive and exotic

equipment.

Taking this into account, the third approach is often

more relevant, which involves the usage of events from

standard components of a computer system. The most

popular method of random number generation in such a

way is random number generation using the CPU clock

counter. However, the high sensitivity of a phase noise of

generators to external influence was investigated in [15],

which means the possibility of influencing the random

number generator from the outside.

CPU clock counters allow you to obtain uniformly

distributed random numbers. For most modern encryption

systems, this is an advantage, since these are the numbers

that modern encryption systems work with. However, in

some papers [16, 17] a data encryption method using

unevenly distributed random numbers was proposed, in

which the direct application of a random number generator

based on the processor clock counter is unsatisfactory.

In [18], a method of generation using an optical

manipulator "mouse" is proposed, which allows obtaining

unevenly distributed random numbers. The disadvantage

of this method is that the speed of generating random

numbers does not exceed 1 kbit/s, which does not allow a

creation of a high-speed encryption system based on it.

In our opinion, the most effective way to create an

unpredictable sequence of numbers is the use of a webcam,

namely, the change of image pixels from frame to frame of

the same image, which was considered in [19], but at that

time (2014) it was theoretically possible to reach a speed

of 200 Mbps, and the maximum resolution of the webcam

did not exceed VGA. But at the current stage, it is

recommended to have a speed of 1 Gbit/s.

The systematization of the above shortcomings of the

existing approaches allows us to formulate the general

problem of the lack of a hardware crypto-resistant,

affordable, inexpensive laboratory high-speed random

number sequence generator.

III. THE PURPOSE AND OBJECTIVES OF THE RESEARCH
The purpose of the research is to create a hardware

crypto-resistant, affordable, inexpensive laboratory high-

speed RNS generator based on the extraction of pixel

values of the webcam matrix.

To solve the set goal, the following tasks were solved:

- development of a method of extracting image pixel

values from a webcam frame;

- examine the obtained RNS for randomness of values

and avalanche effect.

IV. MATERIALS, CONDITIONS AND RESEARCH METHOD

A. Research equipment. ASUS Z97K desktop computer:

CPU Intel® Core™ i3-4l70 CPU @ 3.70 GHz × 4, 32 Gb

of RAM, SDD Kingston 240 Gb. Web Digital Camera:

FULL HD 1080P, TrueColor, QQVGA (176×144), QVGA

(320 × 240), VGA (640 × 480), SVGA (800 × 600). In the

selected webcam, the upper resolution limit, according to

the specification, is 800 × 600 pixels (VGA), and the

default mode is 176 × 144 (QQVGA), the Quarter-QVGA

resolution. If desired, this size can be expanded to HXGA

resolution (4096 × 3072) – it depends on the resolution of

the selected camera [20].
Software: OS Ubuntu 22 LTS 64 bit, Java Amazon

Corretto 17.0.5, IntelliJ IDEA 2023.3.4 (Ultimate Edition),

package com.github.sarxos.webcam version 0.3.12 –

frame capture, javax.imageio package – video image

processing, package java.security.SecureRandom –

software generation of a random sequence.

B. Research methods. To simplify the investigation

process, frame capture was performed in the minimum

QQVGA (176×144) resolution mode.
The block diagram of the experiment algorithm is

shown in Fig. 1. When the camera is in the required

conditions, serial two pictures are taken in BMP or TIFF

format (1). The default size of each of these snapshots is

176 × 144 pixels, for a total of 25344 pixels. This size is

the default for the Webcam class of the webcam-capture

package of the Java programming language version 17.
Obviously, the shorter the time interval between

frames, the less likely that something can change on them

and the better for the experiment. The minimum time

interval depends on the computing power of the equipment

and was 100 milliseconds. Then the received photos are

sent to the server (2).

FIG. 1. Block diagram of the algorithm for generating random

numbers from the pixels of the image formed by the webcam.

Next, it is necessary to obtain a so-called bitmap from

each photo – a matrix (3) in which the values of image

elements (pixels) are stored. For a 24-bit bitmap, each pixel

contains values of three colors (RGB color mode) – red,

green, blue respectively. Each color is allocated 1 byte =

8 bits, that is, the maximum possible number in decimal

format is equal to 255, and the minimum one is 0. The

number 255 corresponds to the maximum intensity of a

color, and the number 0 corresponds to the minimum

intensity.

1 2

3 4

5 6

7

3
Vol 2, No 1, Paper 01004, pp. 1-6 (2024)

SISIOT Journal | journals.chnu.edu.ua/sisiot

From the point of view of the Java language, the data

range of the byte type is the numeric interval of integer

numbers [–128 ... +127], but this is overcome by arithmetic

conversion.

In this way, a matrix (three-dimensional array) of

random numbers in the range [0 .. 255] is obtained:

А = (аi,j,k)m,n,p, m=176, n =144, p=3. (1)

At the next step (4), after a yime interval (100 ms),

another frame of the same image is taken and another

matrix is formed:

В = (bi,j,k)m,n,p , m = 176, n =144, p = 3. (2)

Next step (5), an elementary matrix subtraction

operation is performed:

C = В – A = (bi,j,k – аi,j,k)m,n,p, (3)

where the appropriate values of the differences in the color

components for the two images of each pixel are recorded.

Next, the matrix is flattened into a linear vector:

 E = (ei)t, (4)

where t = m × n × l = 176 × 144 × 3 = 76032.

The resulting values differences can vary in a diapason

from –255 to +255.

Next step (6) – grouping and sorting are carried out and

the resulting vector of random values is further investigated

for compliance with the requirements of speed,

cryptoresistance, avalanche effect, etc. (7).

C. Conditions of experiment. To avoid extraneous

influence, the webcam that was connected to the computer

was located in a dark, deaf box. The frame of darkness is

not given, because on it the human eye will not notice

inhomogeneities in the distribution of points of different

color gamuts. The level of illumination was 10-4 lux,

which is considered as a complete darkness. The

temperature in the room is 20 ºC.
For the contrast of the investigation, as the opposite

side of the limit tests, an image of a completely white

homogeneous wall was taken under uniform daytime

lighting on a cloudy day exactly at noon (Fig. 2).

FIG. 2. Webcam image of a white wall.

In the frame, you can see that, despite the homogeneity

and uniform lighting of the image, the picture was not

homogeneous. It is brighter in the center than on the

periphery, the interspersion of other colors, in particular

red and green, is clearly visible. This allows us to assume

that there are elements of randomness in this byte array. To

what extent this randomness satisfies the crypto-resistance

requirements given in [21] will be clarified later.

V. THE RESULTS OF THE INVESTIGATION OF THE
GENERATED SEQUENCES

The flexible methods of the Webcam and Buffered

Image class of the Java programming language made it

possible to quickly and optimally extract the number

sequence from an instance of a frame immediately without

complex matrix transformations. The sequence itself has

been placed into a simple Array data structure and is ready

for further investigation.

The basic program code of the program is:

Webcam webcam = Webcam. getWebcams() .get(0);

Dimension dimension = WebcamResolution. VGA.

getSize();

webcam.setViewSize(dimension);

webcam.open()

First, the system webcam is initialized. By default, the

default resolution mode is QQVGA. The camera is opened

for work, and access to it by other programs is blocked.

With this setting, you can choose the camera itself (if there

are several of them) and the frame capture mode (frame

resolution). The following code retrieves a snapshot object

from the camera, converts the image to a TIFF byte stream,

and stores it in a one-dimensional byte array.

BufferedImage image = webcam.getImage();

ByteArrayOutputStream stream = new

ByteArrayOutputStream()

ImageIO.write(image, "tiff", stream);

byte[] bytes = stream.toByteArray();

The thus created method of extracting pixel values from

a frame using the process of transforming a three-

dimensional array into an one-dimensional one is greatly

simplified with the help of Java capabilities. When two

consecutive frames from the webcam were received with a

delay of 100 milliseconds, they further investigated for

discrepancies in the values of the corresponding pixels in

the TrueColor color gamut. The values of the differences

in illumination for all points of the two frames are listed.

list.add(bytes1[i] – bytes2[i])

Thus, for each pixel in the image matrix of the first

frame, its difference with the corresponding pixel of the

second image is entered in the list. To estimate the

percentage of chaos between two frames, you need to

calculate the amount of all pixels that have changed their

values and divide by the total amount.

From two consecutive frames of the webcam in

QQVGA mode, 76032 numbers between -255 and +255

were generated as the difference of the corresponding pixel

values. The percentage of pixels that has changed its value

is 63% for complete darkness, for a white illuminated

surface (200 lux) – 82%, for an ordinary office space –

96%. For the completeness of the experiment, the spectrum

of disagreements, i.e. the number of points corresponding

to each disagreement, was further calculated. This was

possible thanks to the aggregation methods of the Java

language.

The histogram of the distribution of discrepancies (Δx)

by number for two frames is presented in Fig. 3.

In this way, the RNS generated by the webcam were

examined for randomness, which showed that, as seen in

Figure 3, for each pixel, the difference in pixel values

between the first and second image was calculated. As can

4
Vol 2, No 1, Paper 01004, pp. 1-6 (2024)

SISIOT Journal | journals.chnu.edu.ua/sisiot

be seen from the histogram, the difference was mostly

within ± 10. Approximately 28000 pixels (or 37%) have

zero deviation. And 9.5K pixels have a deviation of ± 1,

etc. The maximum deviation of -50 has a single point out

of 75K. As for the avalanche effect, the proposed method

shows significantly greater resistance to it, and is at least

63% for complete darkness, which is 13% better than the

standard requirements.

FIG. 3. Histogram of the distribution of differences Δx of two

camera frames.

VI. DISCUSSION OF RESEARCH RESULTS
The obtained results confirmed the high level of

randomness and unpredictability of RNS. The number of

pixels that did not change their value on two consecutive

frames is approximately 28000 (Fig. 3), or 37%.

The obtained solutions (chaos value of 63% under the

most unfavorable conditions – complete darkness) indicate

a high level of the avalanche effect – according to the

requirements of crypto-resistance, it is enough to ensure a

minimum level of 50%. This is explained by the

confirmation of the hypothesis about the chaotic nature and

unpredictability of digital noise in the camera matrix due

to the noise having the origin from the stochastic nature of

the photons interaction with the atoms of the photo-diode

material of the sensor. The obtained results are provided

due to the development of the method described in [19],

namely, the generation of pixels in the dark at an

illumination of about 10-4 lux. This is a simple solution, in

contrast to, for example, work [12], where the chaos

generator was a source of beta radiation.

The disadvantage of the study is the impossibility of

testing RNS with generally accepted NIST tests due to

insufficient size [21]. The development of the research has

a perspective, namely, when the limitations are removed,

for example, not complete darkness, but a bright colorful

background (200 lux), the level of chaos will be even

higher (up to 100%). Theoretically possible to concatenate

RNS of sequential frames and obtain a generation if high

performance up to 1.25 Gbit/s.

VII. CONCLUSION
Based on the results of the research, it was established

that the value of the intensity of the webcam pixels is

unpredictable and random, which is not visible to the naked

eye, but is clearly recorded by hardware and software tools.

Namely, in two pictures in complete darkness with an

interval of 100 milliseconds, 63% of the pixels changed

their value, which is 13% better than the standard

requirements of crypto-resistance to the avalanche effect.

AUTHOR CONTRIBUTIONS
Y.D. – conceptualization, G.P. – methodology,

investigation; R.D. – software, experiment; D.H. –

statistics, D.T. – conceptualization, writing (original draft

preparation).

COMPETING INTERESTS
The authors declare no competing interests.

REFERENCES
[1] UKAZ PREZYDENTA UKRAINY №37/2022 “Pro

rishennia Rady natsionalnoi bezpeky i oborony Ukrainy vid

30 hrudnia 2021 roku "Pro Plan realizatsii Stratehii

kiberbezpeky Ukrainy". URL:

https://www.president.gov.ua/documents/372022-41289.

[in Ukrainian]

[2] H. Fukś, “Four State Deterministic Cellular Automaton

Rule Emulating Random Diffusion,” In: Chopard, B.,

Bandini, S., Dennunzio, A., Arabi Haddad, M. (eds)

Cellular Automata. ACRI 2022. Lecture Notes in Computer

Science, vol. 13402, 2022. Springer, Cham.

https://link.springer.com/chapter/10.1007/978-3-031-

14926-9_13.

[3] Dobrovolsky, Y. "Development of a Hash Algorithm Based

on Cellular Automata and Chaos Theory." Eastern-

European Journal of Enterprise Technologies, 5/9 (113)

2021. Р. 48-55. DOI: 10.15587/1729-4061.2021.242849

https://journals.uran.ua/eejet/article/view/242849/241487.

[4] A. Cicuttin, L. De Micco, M. L. Crespo, et al., “Looking for

Suitable Rules for True Random Number Generation with

Asynchronous Cellular Automata,” Nonlinear Dynamics,

vol. 111, pp. 2711-2722, 2022. https://doi.org/10.1007/

s11071-022-07957-8.

[5] L. Li, Y. Luo, S. Qiu, et al., “Image Encryption Using

Chaotic Map and Cellular Automata,” Multimed Tools

Appl, vol. 81, pp. 40755–40773, 2022.

https://doi.org/10.1007/s11042-022-12621-9.

[6] Asia Othman Aljahdal, “Random Number Generators

Survey,” International Journal of Computer Science and

Information Security (IJCSIS), Vol. 18, No. 10, October

2020. [Online]. Available: https://zenodo.org/records/

4249407.

[7] F. Martinez, “Attacks on Pseudo Random Number

Generators Hiding a Linear Structure,” in Topics in

Cryptology – CT-RSA 2022, S. D. Galbraith, Ed. Cham:

Springer, 2022, vol. 13161, Lecture Notes in Computer

Science. [Online]. Available: https://doi.org/10.1007/978-

3-030-95312-6_7.

[8] Class SecureRandom. All Implemented Interfaces. URL:

https://docs.oracle.com/javase/8/docs/api/java/security/Sec

ureRandom.html.

[9] M. Cornejo, S. Ruhault, “(In)Security of Java

SecureRandom Implementations,” Journées Codage et

Cryptographie, 2014. [Online]. Available: https://www-

fourier.ujf-grenoble.fr/JC2/exposes/ruhault.pdf.

[10] Ostapov, S.E., Dobrovolskyi, Yu.H. "Kvantova

informatyka ta kvantovi obchyslennia." Chernivtsi: ChNU,

2021. - 99 s. https://archer.chnu.edu.ua/xmlui/handle/

123456789/2830. [in Ukrainian]

[11] B. Yan, Z. Tan, S. Wei, H. Jiang, W. Wang, H. Wang, et

al., "Factoring Integers with Sublinear Resources on a

Superconducting Quantum Processor," arXiv, vol.

2212.12372v1, Dec. 2022. [Online]. Available:

https://arxiv.org/pdf/2212.12372.pdf.

https://docs.oracle.com/javase/8/docs/api/java/security/SecureRandom.html
https://docs.oracle.com/javase/8/docs/api/java/security/SecureRandom.html

5
Vol 2, No 1, Paper 01004, pp. 1-6 (2024)

SISIOT Journal | journals.chnu.edu.ua/sisiot

[12] Seongmo Park, Byoung Gun Choi, Taewook Kang,

Kyunghwan Park, Youngsu Kwon, Jongbum Kim,

“Efficient Hardware Implementation and Analysis of True

Random-Number Generator Based on Beta Source,” ETRI,

Volume 42, Issue 4, Special Issue on SoC and AI

Processors, August 2020, Pages 518-526. [Online].

Available: https://onlinelibrary.wiley.com/doi/full/

10.4218/etrij.2020-0083.

[13] V. Barannik, S. Sidchenko, N. Barannik, and A. Khimenko,

"The method of masking overhead compaction in video

compression systems," Radioelectron. Comput. Syst., no. 2,

pp. 51-63, 2021. [Online]. Available: https://doi.org/

10.32620/reks.2021.2.05.

[14] S. Yevseiev, O. Milov, N. Zviertseva, O. Lezik, O.

Komisarenko, A. Nalyvaiko, V. Pogorelov, V. Katsalap, Y.

Pribyliev, and I. Husarova, "Development of the concept

for determining the level of critical business processes

security," East.-Eur. J. Enterp. Technol., vol. 1, no. 9(121),

pp. 21–40, 2023. [Online]. Available:

https://doi.org/10.15587/1729-4061.2023.274301.

[15] Agata Kaźmierczyk, Andrzej Ł. Chojnacki, Kornelia

Banasik. "Pseudorandom Number Generators as Applied in

Reliability Analysis." Kielce University of Technology,

Faculty of Electrical Engineering, Automatic Control and

Computer Science, Department of Power Engineering,

Power Electronics and Electrical Machines,

doi:10.15199/48.2022.12.44. [Online]. Available:

http://pe.org.pl/articles/2022/12/44.pdf.

[16] V. Barannik, N. Barannik, and O. Slobodyanyuk, "Indirect

information hiding technology on a multiadic basis,"

Informatyka, Automatyka, Pomiary w Gospodarce i

Ochronie Środowiska, vol. 11, no. 4, pp. 14–17, 2021.

doi:10.35784/iapgos.2812.

[17] V. Barannik, N. Barannik, O. Ignatyev, and V. Himenko,

"Method of indirect information hiding in the process of

video compression," Radioelectronic and Computer

Systems, vol. 0, no. 4, pp. 119–131, 2021.

doi:10.32620/reks.2021.4.10.

[18] S. Ostapov, B. Diakonenko, M. Fylypiuk, K. Hazdiuk, L.

Shumyliak, and O. Tarnovetska, "Symmetrical

cryptosystems based on cellular automata," International

Journal of Computing, vol. 22, pp. 15–20, Mar. 2023.

https://doi.org/10.47839/ijc.22.1.2874.

[19] R. Li, "A true random number generator algorithm from

digital camera image noise for varying lighting conditions,"

in SoutheastCon 2015, Fort Lauderdale, FL, USA, 2015,

pp. 1–8. doi: 10.1109/SECON.2015.7132901. Available:

https://ieeexplore.ieee.org/document/7132901.

[20] "Webcam-capture Resolution," GitHub. [Online].

Available: https://github.com/sarxos/webcam-

capture/blob/master/webcam-

capture/src/main/java/com/github/sarxos/webcam/Webca

mResolution.java.

[21] L. Afflerbach, "Criteria for the assessment of random

number generators," Journal of Computational and Applied

Mathematics, vol. 31, no. 1, pp. 3–10, 1990. doi:

10.1016/0377-0427(90)90330-3.

Rostyslav Diachuk

Had received BS and MS degrees in

Software Engineering Department
from Yuriy Fedkovych Chernivtsi

National University. He worked as an

assistant of the Software Engineering
Department, but currently studying

Ph.D on the same department. His
research interests include

cryptography, pseudorandom sequence

systems.

ORCID ID: 0000-0002-6259-3302

Yuriy Dobrovolsky

Graduated from the Faculty of Physics
and Mathematics in 1984. Received the

degree of Doctor of Technical

Sciences. Currently, he is a professor at
the department of software engineering

at Yuri Fedkovich Chernivtsi National

University. His research interests
include software reliability

engineering, cryptography, coding

theory, hardware random number
sequence generation.

ORCID ID: 0000-0003-0626-0594

Dmytro Hanzhelo

Now is studying on a Ph.D. in

Computer Science, Yuriy Fedkovych
Chernivtsi National University. He is

currently a security practitioner,

mentor, and part-time lecturer. His
research interests include

cybersecurity, cryptography, random

number sequences generation.

ORCID ID: 0000-0002-0836-4568

Heorhii Prokhorov

He had received a Ph.D. in physics and

mathematics in 2006. Now is a
Assistant Professor of Software

Engineering Department, Yuriy
Fedkovych Chernivtsi National

University. His research interests

include cryptography, coding theory,
hardware random number sequences

generation.

ORCID ID: 0000-0001-7810-2785

Denis Trembach

Had received BS and MS degrees in
Information Security from Evropejs'kij

Universitet Financiv, Ukraine. Now is

studying on a Ph.D. in Computer

Science, Yuriy Fedkovych Chernivtsi

National University. He is currently a

security practitioner, mentor, and part-
time lecturer. His research interests

include cybersecurity, applied AI,

chaotic systems dynamics.

ORCID ID: 0000-0001-8095-4186

https://orcid.org/0000-0002-6259-3302
https://orcid.org/0000-0003-0626-0594
https://orcid.org/0000-0002-0836-4568
https://orcid.org/0000-0001-7810-2785
https://orcid.org/0000-0001-8095-4186

6
Vol 2, No 1, Paper 01004, pp. 1-6 (2024)

SISIOT Journal | journals.chnu.edu.ua/sisiot

Дослідження рівня хаосу та надійності
у послідовностях випадкових чисел,

що згенеровані вебкамерою
Ростислав Дячук, Юрій Добровольський, Дмитро Ганжело, Георгій Прохоров*, Денис Трембач

Кафедра програмного забезпечення комп’ютерних систем , Чернівецький національний університет ім. Юрія Федьковича

*Автор-кореспондент (Електронна адреса: g.prokhorov@chnu.edu.ua)

АНОТАЦІЯ Захист інформації, збереження цілісності, надійність програмного забезпечення для передачі даних є
сьогодні важливою складовою інформаційних технологій. Інженерні та програмні рішення у сфері програмної
інженерії, зокрема криптографії та надійності, постійно потребують використання випадкових послідовностей у своїх
алгоритмах. Зазвичай, стандартні методи фреймворків, програмних платформ, бібліотек та мов програмування не
забезпечують необхідний рівень випадковості згенерованих послідовностей. В основному випадковість програмних
генераторів послідовностей чисел базується на значенні стану певного системного параметру, наприклад значенні
поточної дати та часу. Очевидно, що при нескладних кібер-атаках можливо досягти передбачуваного результату і
поставити криптостійкість системи під загрозу. Для розв’язання цієї проблеми застосовано властивість вебкамери
генерувати послідовності випадкових чисел з одного і того ж зображення. Показано, що факт зміни значень
освітленості, створеної пікселями, відрізняється, щонайменше на 63 % для двох послідовних кадрів з інтервалом у
100 мілісекунд у повній темряві, що на 13 % перевищує вимоги до криптостійкості. Таким чином, можна говорити про
високий рівень випадковості згенерованих числових послідовностей. Генерація кадрів здійснювалась як при повній
темряві при освітленості 10-4 люкса, так і рівномірно освітленої (200 люкс) білої поверхні. Випробування камери на
граничних умовах дають повну картину непередбачуваності та хаосу при генеруванні випадкових послідовностей.
Висловлюється гіпотеза, що даний підхід теоретично дозволяє генерувати випадкові послідовності з швидкістю
1.25 Гбіт/сек, а програмно-апаратне рішення до 10 Гбіт/сек. Підхід, побудований на цій властивості вебкамери,
дозволить вирішити проблему проектування доступного недорогого лабораторного криптостійкого надійного
швидкісного апаратного генератора випадкових чисел у лабораторних умовах без залучення спеціального
обладнання.

КЛЮЧОВІ СЛОВА програмна інженерія, хаос, криптостійкість, надійність програмного забезпечення, генератор
випадкових чисел.

This article is licensed under a Creative Commons Attribution 4.0 International License.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://creativecommons.org/licenses/by/4.0/

