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ABSTRACT This article focuses on the use of the Python programming language to visualize chaotic models and for the
investigation of the influence of initial conditions in physical systems, in particular, the Chua, Lorenz, and Réssler models.
Chaotic systems are dynamic and sensitive to initial conditions, making them unpredictable as to how they will behave and
react. This means that in the long run, very different outcomes can result from even small changes in initial conditions. Chaotic
systems are studied in a variety of scientific fields, including physics, mathematics, biology, engineering and economics.
Python, the world's most popular scientific programming language, transforms complex models into intuitive visualizations.
The paper reveals the capabilities of various Python algorithms and libraries used to visualize these models, taking into
account their specifics. The article focuses on three chaotic models: the Chua system, which is a universal example of a chaotic
system; the Lorenz attractor, which is famous for its chaotic properties; and the Rdssler rotational oscillator, which is widely
used in such fields as biology, chemistry, physics, and engineering. Each model is studied in detail, its key characteristics and
parameters are presented, and graphs of these models are displayed by means of Python simulation. Python, due to its ease
of use and high performance, makes it possible to solve such tasks quickly and efficiently. Finally, the authors share their
conclusions on the importance of initial conditions for Lorenz, Réssler and Chua systems, as well as their impact on
telecommunication systems. This study provides insight into how Python, a programming language with a high level of
abstraction, allows for the rapid and efficient development of complex algorithms and models needed to deal with chaotic
systems. It also allows researchers and engineers to develop efficient algorithms for signal processing and control of
telecommunication systems.
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I. INTRODUCTION

n the beginning, according to ancient Greek

I theology and philosophy, was chaos [1]. Greek

philosophers believed that our ordered universe, the

cosmos, was formed from this chaos. The ancient Greeks

did not give a specific definition of chaos, although it was

associated with infinity, disorder, and unpredictability. The

Greeks believed that disorder could lead to order under

certain conditions, which modern science discovered
centuries later.

Chaos is not just a disorder. It is a dynamic and self-
organizing world, where by chance amazing patterns are
born, and by instability - stable structures [2]. Chaotic
systems exist in all areas of life, from weather and climate
to the evolution of human life and behavior. Imagine a
swinging pendulum. It would seem that its motion is simple
and straightforward. However, add a little vibration and the
pendulum is already swinging chaotically from side to side,
defying any predictions. This example illustrates the
essence of chaos: even in simple systems there is
unpredictability, which makes their behavior complex and
fascinating.

Chaotic systems have fascinated scientists and
mathematicians for decades due to their complex and
unpredictable behavior. The history of the study of chaotic
systems begins in the XIX century with the works of

Poincaré, who studied the three-body problem and
discovered unpredictable trajectories in its solutions that
remained stable for a long time [3].

It was discovered that even small changes in the initial
conditions can cause significant differences in the
subsequent trajectories, sometimes with unpredictable
results. This was a defining discovery that created the calm
before the storm that soon erupted in the heart of science.
At this point in history, although the first indications of
chaos in dynamical systems had appeared, science was not
yet ready to accept such a radical idea. In fact, with his
work, Poincaré discovered the concept of "deterministic
chaos," the idea that even in a deterministic system, where
everything is determined by the laws of physics, complex,
unpredictable behaviors can occur. This is due to the
sensitivity to initial conditions that characterizes chaotic
systems. However, this great idea waited almost a century
to be fully realized. It was when Edward Lorenz made
radical discoveries in meteorology in the 1960s that drew
our attention to what we can see not only in complex
systems but also in very simple mathematical models [4].

When delving into the world of chaotic systems, it is
impossible to avoid the models of Chua, Lorenz, and
Réssler [3, 5-10]. They demonstrate how simple dynamical
systems can create complex, unpredictable patterns by
combining elements of order and chaos in their trajectories.
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These classical chaos models have the ability to display
striking patterns of order and chaos, even in their simplest
mathematical form. The Lorenz model is a model of the
atmosphere developed to study convection, i.e. heat
transfer in liquids or gases. The Rassler model represents
one of the simplest three-dimensional systems that can
show chaotic behavior. The Chua model is designed to
show chaos in a simple electrical oscillating circuit. Using
Python to study these models opens up new possibilities
for science. Python, with its powerful libraries such as
NumPy for computation and Matplotlib for visualization,
provides researchers with the tools to model, analyze, and
visualize these complex systems.

Il. DESCRIPTION OF THE CHUA CHAOTIC SYSTEM

A major advance in chaos theory, was developed by
Leon O. Chua in 1992 [5]. They developed a Chua circuit,
a this self-contained electronic circuit that is known for its
ability to generate a variety of dynamic phenomena,
making it a classic example of true chaos. At the center of
the system is the Chua diode, a nonlinear resistor that
allows the circuit to exhibit chaotic behavior. The Chua
system, with resistors, capacitors, and Chua diodes, is a
simple but powerful model for studying chaotic theory. Its
behavior can be described for three combinations of first-
order nonlinear differential equations. The mathematical
model of the Chua circle is as follows:

S s (y—x— h0o),

v
dt_x y+Z' (1)

k %:—ﬁ*y_

Where «, B are system parameters that determine the
behavior of the system. And h(x) is a piecewise linear
function that introduces nonlinearity:

h() = myz + 2 (mg —my)(x + 1] = lx = 1)) ()

Diagram of Chua's system shows chaotic behavior. The
attractors are seen in phase space and are often referred to
as "Chua attractors". Chua's system can exhibit time-
doubling bifurcations, chaos synchronization, and other
types of complex behavior, which can be seen in the
simulation diagram (see Fig. 1).

—— Chua trajectory
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FIG. 1. Output image showing the simulation results for the Chua
system.
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Chua's scheme has had practical applications in a
variety of industries:

- Random number generation: A Pseudo Random
Number Generator Based on the Chaotic System of Chua's
Circuit and its Real Time FPGA Implementation [11];

- Secure communication: Secure communication using
a chaos based signal encryption scheme [12].

Fig. 1, shows the result of the implementation of the
Chua chaotic system in Python.

We can gain insight into the underlying dynamics of
chaotic systems and explore the rich behavior of this iconic
circuit by using Python to model Chua's system.

I1l. DESCRIPTION OF THE LORENZ CHAOTIC SYSTEM

In 1963, a meteorologist and mathematician Edward N.
Lorenz introduced a set of three ordinary differential
equations (ODEs) known as the Lorenz system [6, 10].
This system is a paradigmatic example of nonlinear
continuous dynamic systems that exhibit deterministic
chaos, characterized by sensitivity to initial conditions,
often referred to as the "butterfly effect".

The Lorenz system was originally derived as a
simplified model of atmospheric convection, intended to
capture the main features of fluid flow that lead to chaotic
behavior. To create this model, Lorenz built upon earlier
concepts proposed by Saltzman B., developing a two-layer
model that approximates atmospheric motion. In this
model, the fluid, which represents a gas, encompasses the
upper and lower atmosphere [13-19]. Different constant
temperatures are considered in each layer, generating an
external force that drives convection. When the
temperature gradient is sufficiently large, convection
becomes turbulent.

For ease of simulation, Lorenz reduced the partial
differential equations to a simple system with three
differential equations. Although the quadratic polynomial
vector field is relatively simple, the associated dynamics
are highly complex and the mechanisms that lead to chaos
have been the subject of considerable research.

The equations describing the Lorenz system are as
follows:

(S=0+(y-2x),

dt
v _ — ) —
w=-**b—2) -y 3)
dz

E—x*y—ﬁ*z.

Here, X, y and z are state variables representing the state
of the system at any given time, and [0, p, f] are
parameters. The values of these parameters are often used
to demonstrate chaotic behavior.

Lorenz system can be used to model and study various
phenomena in different fields, including:

- Meteorology and Climatology: Effect of averaging
timescale on a forced Lorenz model [13];

- Physics: A Nonlinear Oscillator Derived from the
Lorenz Chaotic System [14];

- Engineering: Chaos control and synchronization of
modified Lorenz system using active control and
backstepping scheme [15].

Fig. 2, shows the result of the implementation of the
Lorenz chaotic system in Python.
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Lorenz Attractor

Rossler Attractor

FIG. 2. Output image showing the simulation results for the
Lorenz system.

IV. DESCRIPTION OF THE ROSSLER CHAOTIC

The next mathematical model of chaotic behavior is the
Rossler system, which is considered together with the
Lorenz system classic examples of chaotic systems [7].
Rossler system was proposed in 1976 by the German
scientist Otto Rossler (Otto E. Réssler) for description of
chemical reactions occurring in the reactor with mixing.
The system consists of three differential equations of the
first order and contains only one nonlinearity:

ax _ ., _

aa_. Y5

ay _

dt—x+ay, 4)
%=b+z*(x—c),

where X, y and z are state variables, and [a, b, c] are
parameters. The system exhibits chaotic behavior at certain
values of the parameters, which makes it an interesting
object for studying chaos theory [8]. The Réassler system
has been used to model a wide range of phenomena,
including chemical reactions, population dynamics, and
electrical circuits. It is also used as a teaching tool to
introduce students to the concepts of chaos theory and
nonlinear dynamics. The Rassler system differs from the
Lorenz system by the type of the vector field of phase
trajectories. In the Lorenz system the divergence is
constant at any point in the phase space, negative and
independent of the control parameter, while in the Rossler
system the divergence is not constant and depends on the
variable x and the control parameter c.

The Rossler system is used in:

- Chemical systems: Chaos control for Willamowski—
Rassler model of chemical reactions [16];

- Engineering and Electronics: Chaos control for the
family of Rossler systems using feedback controllers [17];

- Biology and Medicine: Chaos Control Applied to
Heart Rhythm Dynamics [18].

Fig. 3, shows the result of the implementation of the
Rossler chaotic system in Python.

V. DEPENDENCE OF INITIAL CONDITIONS FOR THE
LORENZ, ROSSLER AND CHUA SYSTEMS
Python offers a plethora of data types, including float,
int, str, dict, list, tuple, set, and others [9]. Each data type
has its own specific applications and usage. This discussion
will focus on the first two, float and int. It is obvious that
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FIG. 3. Output image showing the simulation results for the
Rdssler system.

chaotic signals are pretty dependent on the initial
conditions. Let us consider the same data, however
represented with different “int” and “flow” data kinds, For
example we can call “initial conditions int” and
“initial conditions_float” and show how minor changes in
the data representation can significantly affect the
computational results, especially in cases with high
sensitivity to initial conditions, as is observed in chaotic
systems.

Fig. 4 shows a code snippet that demonstrates the
implementation of testing initial conditions for a chaotic
Lorenz system using numbers of type Int and float. For
other chaotic systems, the code structure remains similar,
but the corresponding equation will be adapted to the
specifics of each particular system.

FIG. 4. Code for testing initial conditions with Int and float type.

Figures 4 and 11 used the following set of Python
libraries: the NumPy library provided efficient work with
large multidimensional arrays and mathematical functions,
while the SciPy library extended the capabilities of NumPy
to perform complex scientific and technical calculations,
including the integration of differential equations using the
odeint function. To visualize the results, the Matplotlib
library, which provides a complete toolkit for creating
various static, animated, and interactive visualizations, was
used. This set of libraries ensured effective modeling and
visualization of chaotic systems.
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As noted earlier, chaotic systems are sensitive to initial
conditions. When the initial conditions of a chaotic system
are switched from floating point to integer numbers, this
causes a modification of the initial point in phase space.
Therefore, a small change can lead to essentially different
trajectories over time.

When executing the code, we first observed that the
trajectories of the floating-point system and the integer
initial conditions coincided. However, over time, the
behavior of the system began to differ significantly, which
makes long-term prediction of the system's behavior
impossible. The differences between integer modeling and
floating-point modeling illustrate the sensitivity of the
chaotic system to the initial conditions and their smallest
difference during repeated solutions.

Since even the smallest deviations in quantification or
rounding can cause drastically different results, we can
assume that rounding leads to a significant loss of
accuracy, which has more profound consequences in
chaotic systems than in more stable systems.

In this example, we illustrated the "Butterfly Effect”, a
concept that describes how small reasons can have large
outcomes, which includes how a flap of a butterfly's wings
in China can trigger a tornado in Africa. Converting a
floating point number to an integer is one such small reason
that can completely change the behavior of a chaotic
system.

Figures 5 and 6 show the beginning and end of the
simulation result for the Lorenz system for the initial
conditions given with Int and float types.

—— FloatICs
— IntiCs

FIG. 5. Output image showing the output of the initial simulation
for the Lorenz system for the initial conditions given with Int and
float types.
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FIG. 6. Output image showing the end of simulation result for the
Lorenz system for the initial conditions given with Int and float

types.
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FIG. 7. Output image showing the start of simulation result for the
Rassler system for the initial conditions given with Int and float

types.

100
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FIG. 8. Output image showing the end of simulation result for the
Rassler system for the initial conditions given with Int and float
types.

Chua System 2D Projection
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FIG. 9. Output image showing the initial simulation results for the
Chua system for initial conditions with different decimal places.

5 Chua System 2D Projection

—— FloatICs
—— IntICs

=

=, i

=3 T T T
—~3 =2 =1 0 1 2 3
X

FIG. 10. Output image showing the final simulation results for the
Chua system for initial conditions with different decimal places.
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Figures 7 and 8 display the start and end of the
simulation results for the Rossler system, using integer and
floating-point initial conditions. Figures 9 and 10 present
the initial and final simulation results for the Chua system,
with integer and floating-point initial conditions.

The results of the Lorenz, Rossler and Chua systems
simulation (Figures 6, 8, 10) show that after a certain
number of iterations, trajectories with different accuracies
begin to diverge. Over time, this difference will only
increase, indicating that without proper attention to the
accuracy of calculations, the implementation of such
systems in real hardware can lead to significant deviations
in the operation of communication systems built on the
basis of chaotic systems.

The next step in the study is to check how the initial
conditions change the modeling results with different
accuracy. Fig. 11 shows the code for testing the initial
conditions in the Lorenz system using different numbers of
decimal places. This allows us to assess the impact of
numerical precision on the dynamics of a chaotic system.
For other chaotic systems, the structure of the code remains
the same, but the system function must be adapted to the
specifics of each particular system. To do this, we need to
create a function that will round the initial conditions for
each level of accuracy to 1, 2, and 3 decimal places,
respectively.

FIG. 11. Code for testing initial conditions with different decimal
places.

The initial and final simulation results for the Lorenz
system with initial conditions with different decimal places
are shown in Figures 12 and 13. Figures 14 and 15 illustrate
the initial and final stages of the Rossler system simulation,
with the initial conditions set to different decimal places.
Figures 16 and 17 illustrate the initial and final stages of
the Chua system simulation, with the initial conditions set
to different decimal places.

The simulation results of the Lorenz, Rossler and Chua
systems (Figures 13, 15, 17) demonstrate the impact of
varying numerical precision on the dynamics of chaotic
systems. In particular, the simulation results indicate that
the trajectories of systems with differing numbers of
decimal places begin to diverge after a specific number of
iterations. With increasing time this divergence increases.
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FIG. 12. Output image showing the initial simulation results for
the Lorenz system for initial conditions with different decimal
places.

ICs=(0, 1, 1.015)
(0,1,1.0)

FIG. 13. Output image showing the final simulation results for the
Lorenz system for initial conditions with different decimal places.

—— Full precision: ICs=(0, 1, 1.015)
—— 1 decimal: ICs=(0, 1, 1.0)

—— 2 decimal: ICs=(0, 1, 1.01)
—— 3 decimal: ICs=(0, 1, 1.015) 20.0
17.5
15.0
125
10.0

15 —15

FIG. 14. Output image showing the start of simulation result for
the Rossler system for initial conditions with different decimal
places.

FIG. 15. Output image showing the end of simulation result for
the Rassler for initial conditions with different decimal places.
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3

—— Full precision: ICs=(1.017, 0, 0)
- 1 decimal: ICs=(1.0, 0, 0)

24 2 decimal: ICs=(1.02, 0, 0)

—— 3 decimal: ICs=(1.017, 0, 0)

s

-3
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FIG. 16. Output image showing the start of simulation result for

the Chua system for initial conditions with different decimal
places.

—— Full precision: ICs=(1.017, 0, 0)
1 decimal: ICs=(1.0, 0, 0)

24 —— 2 decimal: ICs=(1.02, 0, 0)

—— 3 decimal: ICs=(1.017, 0, 0)
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FIG. 17. Output image showing the end of simulation result for
the Chua system for initial conditions with different decimal
places.

The graphs showed a divergence of trajectories. As
expected in chaotic systems, the modified trajectories
differed over time from the initial trajectory, or in other
words, the trajectory of full accuracy. This divergence is
related to the sensitivity of the Lorenz system, where even
small differences can quickly amplify, significantly
altering the evolution of the system. An important
observation was the speed of divergence of each trajectory
from the reference behavior of full fidelity. Trajectories
with more decimal places (more precise rounding)
followed the reference more closely for a longer period of
time before diverging, while trajectories with fewer
decimal places (less precise rounding) diverged more
quickly.

VI. CONCLUSION

Using Python simulations, we have studied the
Chua, Lorenz and Rossler systems, classic examples of
chaotic dynamics. By modelling these systems and
visualizing their trajectories, we observed the emergence
of complex behavior. Python proved to be a versatile tool
for studying chaotic phenomena, offering insights into the
sensitivity to initial conditions, the formation of
characteristic patterns, and the dynamics of strange
attractors. In microelectronics and in the context of digital
systems and integrated circuits, floating point truncation to
integer and rounding of numbers to 1, 2, 3 decimal places
can be analogous to quantization errors in analogue-to-
digital conversion, where a continuous range of values
must be represented by discrete levels due to the nature of
digital systems. Such changes can affect the accuracy of
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systems and are a critical factor that engineers must
consider. For example, it can affect timing accuracy, signal
processing in a way that can potentially affect the
reliability of telecommunications systems. In this way,
Lorenz, Chua and Rossler's attractor experiments serve as
a metaphor for the importance of accuracy in
telecommunications systems: they illustrate how small
changes in conditions or parameters can have a significant,
sometimes unpredictable, impact on system behavior. This
highlights the need for a careful and meticulous approach
to the design and testing of telecommunications systems to
ensure their reliability.
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[Docnip)XeHHA BNANBY TOYHOCTI 06UncneHHsA
Ha peani3auilo XaoTUYHUX cuctem Ha Python
ANA 3aXULLLEHUNX Te/IEKOMYHiIKaLUiMHUX cuctem

Mukona KywhHip, Mpuropiii Kocosan®, Bnagucnas MenbHUK
Kadepnpa pagioTexHikm Ta iHpopmaLinHoi 6e3neku, YepHiBeLbKOro HaLioHanbHOro yHiBepcuTeTy imeHi KOpis ®egbkoBuya, YepHisui, YkpaiHa
*ABTOp-KOpecnoHAeHT (EnekTpoHHa agpeca: g.kosovan@chnu.edu.ua)

AHOTALLIA La cTtaTra npuceBaYyeHa BMKOPUCTaHHIO MOBW MporpamyBaHHA Python ans Bisyanisauii XxaoTMYHWX mopenew i
AOCNIAXKEHHA BNAMBY NMOYATKOBMX YMOB Y Gi3MYHMX cUCTeMax, 30Kpema, B mogenax Yya, JlopeHua i Peccnepa. XaoTuuHi
CUCTEMU € AMHAMIYHUMM | YYTAMBMMM 4,0 NOYATKOBUX YMOB, LLLO POBUTb iX HenepeabavyBaHMMM LWLOA0 TOTO, IK BOHW byayTb
nosoauTUcA i pearysatu. Lle 03Hauag, Wo B A4OBroCTPOKOBI NEPCNEKTMBI HABITb HEBENIMKI 3MiHM MOYATKOBUX YMOB MOXKYTb
NpU3BECTU 40 AyXe Pi3HMX pe3ynbTaTiB. XaoTUYHI CUCTEMM BMBYAIOTLCA B Pi3HUX HAYKOBWX ranysax, BKAOYatouu ¢isuky,
MaTemMaTuKy, bionorito, iHXeHepito Ta eKOHOMIKy. Python, HailnonynapHiwa y cBiTi MOBa HAayKOBOro MpOrpamyBaHHA,
NepeTBOPIOE CKNAAHI MOZENi Ha iIHTYITUBHO 3p0O3yMini BidyanisaLii. Y cTaTTi pO3KPMBAOTLCA MOXKANBOCTI PiISHUX aITOPUTMIB i
6ibniotek Python, Wo BUMKOpPUCTOBYHOTLCA ANA Bidyanisauii LMX Mmoaenel 3 ypaxyBaHHAM ixHboi cneundikm. OCHOBHY yBary
NPUAINEHO TPbOM XaOTUYHUM MOZENAM: 06'ekTy Yya, AKMI € yHiIBEPCANbHUM NPUKAALOM XaOTUYHOI CUCTEMMU; aTPaAKTOPY
JlopeHua, AKWUIA BiAOMUIA CBOIMM XAaOTUYHUMM BAACTMBOCTAMM; Ta obepTasbHOMY ocuunaTopy Peccnepa, AKWMA LWMPOKO
BMKOPUCTOBYETLCA B TaKWUX ranyssax, Ak biosoria, ximis, ¢isnka Ta iHxeHepia. KoXHa moaenb AeTaNbHO PO3rNALAETLCA,
HaBOAATLCA ii KHOYOBI XapPaKTEPUCTUKM Ta MapamMeTpy, a rpadikn Uux moaenen 4eMOHCTPYHTLCA 32 4ONOMOIoK CUMYALLT
Ha moBi Python. Python, 3aBasKM NPOCTOTI BUKOPUCTaHHA Ta BUCOKi NPOAYKTUBHOCTI, 403BOSE BMPIiLLYBaTK TaKi 3aBAaHHA
LWBMAKO Ta epeKTUBHO. HacaMKiHeLb aBTOpPU AiNATbCA CBOIMM BUCHOBKaMM L0400 BAXKNMBOCTI MOYATKOBMX YMOB ANS CUCTEM
JlopeHua, Peccnepa Ta Yya, a TaKoXK iXHbOro BNAMBY HA TENIEKOMYHIKaLLiMHI cucTemu. Lie focnigyKeHHA fa€ yaBNEHHA Npo Te,
AK Python, moBa nporpamyBaHHA 3 BMCOKMM piBHEM abCTpakuiji, 403BONSE LWBUAKO i ePEKTUBHO PO3POOAATM CKNagHi
aNropuTMM | Moaeni, HeobxiaHi ANA Po6OTU 3 XaOTUYHUMM CMCTEMaMM. BOHa TaKOX A03BONAE AOCNIAHUKAM Ta iHXKeHepam
po3pobnATN edeKTUBHI aNropUTMK AN 06POOKM CUrHANIB Ta YNPABAIHHA TEIEKOMYHIKaLiMHUMK cUCTeMamMM.

K/NKOYOBI C/IOBA Bi3yani3saLia xaoTudHux mogeneii, Python, mogeni Yya, JlopeHua Ta Peccnepa, AMHAMIYHI cucTemu,
XaO0TUYHi cucTemm.
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