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ABSTRACT This article focuses on the use of the Python programming language to visualize chaotic models and for the 
investigation of the influence of initial conditions in physical systems, in particular, the Chua, Lorenz, and Rössler models. 
Chaotic systems are dynamic and sensitive to initial conditions, making them unpredictable as to how they will behave and 
react. This means that in the long run, very different outcomes can result from even small changes in initial conditions. Chaotic 
systems are studied in a variety of scientific fields, including physics, mathematics, biology, engineering and economics. 
Python, the world's most popular scientific programming language, transforms complex models into intuitive visualizations. 
The paper reveals the capabilities of various Python algorithms and libraries used to visualize these models, taking into 
account their specifics. The article focuses on three chaotic models: the Chua system, which is a universal example of a chaotic 
system; the Lorenz attractor, which is famous for its chaotic properties; and the Rössler rotational oscillator, which is widely 
used in such fields as biology, chemistry, physics, and engineering. Each model is studied in detail, its key characteristics and 
parameters are presented, and graphs of these models are displayed by means of Python simulation. Python, due to its ease 
of use and high performance, makes it possible to solve such tasks quickly and efficiently. Finally, the authors share their 
conclusions on the importance of initial conditions for Lorenz, Rössler and Chua systems, as well as their impact on 
telecommunication systems. This study provides insight into how Python, a programming language with a high level of 
abstraction, allows for the rapid and efficient development of complex algorithms and models needed to deal with chaotic 
systems. It also allows researchers and engineers to develop efficient algorithms for signal processing and control of 
telecommunication systems. 
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I. INTRODUCTION 

n the beginning, according to ancient Greek 

theology and philosophy, was chaos [1]. Greek 

philosophers believed that our ordered universe, the 

cosmos, was formed from this chaos. The ancient Greeks 

did not give a specific definition of chaos, although it was 

associated with infinity, disorder, and unpredictability. The 

Greeks believed that disorder could lead to order under 

certain conditions, which modern science discovered 

centuries later. 

Chaos is not just a disorder. It is a dynamic and self-

organizing world, where by chance amazing patterns are 

born, and by instability - stable structures [2].  Chaotic 

systems exist in all areas of life, from weather and climate 

to the evolution of human life and behavior. Imagine a 

swinging pendulum. It would seem that its motion is simple 

and straightforward. However, add a little vibration and the 

pendulum is already swinging chaotically from side to side, 

defying any predictions. This example illustrates the 

essence of chaos: even in simple systems there is 

unpredictability, which makes their behavior complex and 

fascinating. 
Chaotic systems have fascinated scientists and 

mathematicians for decades due to their complex and 

unpredictable behavior. The history of the study of chaotic 

systems begins in the XIX century with the works of 

Poincaré, who studied the three-body problem and 

discovered unpredictable trajectories in its solutions that 

remained stable for a long time [3]. 

It was discovered that even small changes in the initial 

conditions can cause significant differences in the 

subsequent trajectories, sometimes with unpredictable 

results. This was a defining discovery that created the calm 

before the storm that soon erupted in the heart of science. 

At this point in history, although the first indications of 

chaos in dynamical systems had appeared, science was not 

yet ready to accept such a radical idea. In fact, with his 

work, Poincaré discovered the concept of "deterministic 

chaos," the idea that even in a deterministic system, where 

everything is determined by the laws of physics, complex, 

unpredictable behaviors can occur. This is due to the 

sensitivity to initial conditions that characterizes chaotic 

systems. However, this great idea waited almost a century 

to be fully realized. It was when Edward Lorenz made 

radical discoveries in meteorology in the 1960s that drew 

our attention to what we can see not only in complex 

systems but also in very simple mathematical models [4]. 

When delving into the world of chaotic systems, it is 

impossible to avoid the models of Chua, Lorenz, and 

Rössler [3, 5-10]. They demonstrate how simple dynamical 

systems can create complex, unpredictable patterns by 

combining elements of order and chaos in their trajectories. 

I 



 

2 
Vol 2, No 1, Paper 01003, pp. 1-7 (2024) 

SISIOT Journal | journals.chnu.edu.ua/sisiot 

These classical chaos models have the ability to display 

striking patterns of order and chaos, even in their simplest 

mathematical form. The Lorenz model is a model of the 

atmosphere developed to study convection, i.e. heat 

transfer in liquids or gases. The Rössler model represents 

one of the simplest three-dimensional systems that can 

show chaotic behavior. The Chua model is designed to 

show chaos in a simple electrical oscillating circuit. Using 

Python to study these models opens up new possibilities 

for science. Python, with its powerful libraries such as 

NumPy for computation and Matplotlib for visualization, 

provides researchers with the tools to model, analyze, and 

visualize these complex systems.  

II. DESCRIPTION OF THE CHUA CHAOTIC SYSTEM  
A major advance in chaos theory, was developed by 

Leon O. Chua in 1992 [5]. They developed a Chua circuit, 

a this self-contained electronic circuit that is known for its 

ability to generate a variety of dynamic phenomena, 

making it a classic example of true chaos. At the center of 

the system is the Chua diode, a nonlinear resistor that 

allows the circuit to exhibit chaotic behavior. The Chua 

system, with resistors, capacitors, and Chua diodes, is a 

simple but powerful model for studying chaotic theory. Its 

behavior can be described for three combinations of first-

order nonlinear differential equations. The mathematical 

model of the Chua circle is as follows: 

{
 
 

 
 
𝑑𝑥

𝑑𝑡
= 𝛼 ∗ (𝑦 − 𝑥 − ℎ(𝑥)),

𝑑𝑦

𝑑𝑡
= 𝑥 − 𝑦 + 𝑧,

𝑑𝑧

𝑑𝑡
= −𝛽 ∗ 𝑦.

          (1) 

Where α, β are system parameters that determine the 

behavior of the system. And h(x) is a piecewise linear 

function that introduces nonlinearity: 

ℎ(𝑥) = 𝑚1𝑧 +
1

2
(𝑚0 −𝑚1)(|𝑥 + 1| − |𝑥 − 1|)  (2) 

Diagram of Chua's system shows chaotic behavior. The 

attractors are seen in phase space and are often referred to 

as "Chua attractors". Chua's system can exhibit time-

doubling bifurcations, chaos synchronization, and other 

types of complex behavior, which can be seen in the 

simulation diagram (see Fig. 1). 

 

 

FIG. 1. Output image showing the simulation results for the Chua 

system. 

Chua's scheme has had practical applications in a 

variety of industries: 

- Random number generation: A Pseudo Random 

Number Generator Based on the Chaotic System of Chua's 

Circuit and its Real Time FPGA Implementation [11]; 
- Secure communication: Secure communication using 

a chaos based signal encryption scheme [12]. 
Fig. 1, shows the result of the implementation of the 

Chua chaotic system in Python. 

We can gain insight into the underlying dynamics of 

chaotic systems and explore the rich behavior of this iconic 

circuit by using Python to model Chua's system. 

III. DESCRIPTION OF THE LORENZ CHAOTIC SYSTEM  
In 1963, a meteorologist and mathematician Edward N. 

Lorenz introduced a set of three ordinary differential 

equations (ODEs) known as the Lorenz system [6, 10]. 

This system is a paradigmatic example of nonlinear 

continuous dynamic systems that exhibit deterministic 

chaos, characterized by sensitivity to initial conditions, 

often referred to as the "butterfly effect". 

The Lorenz system was originally derived as a 

simplified model of atmospheric convection, intended to 

capture the main features of fluid flow that lead to chaotic 

behavior. To create this model, Lorenz built upon earlier 

concepts proposed by Saltzman B., developing a two-layer 

model that approximates atmospheric motion. In this 

model, the fluid, which represents a gas, encompasses the 

upper and lower atmosphere [13-19]. Different constant 

temperatures are considered in each layer, generating an 

external force that drives convection. When the 

temperature gradient is sufficiently large, convection 

becomes turbulent. 

For ease of simulation, Lorenz reduced the partial 

differential equations to a simple system with three 

differential equations. Although the quadratic polynomial 

vector field is relatively simple, the associated dynamics 

are highly complex and the mechanisms that lead to chaos 

have been the subject of considerable research. 

The equations describing the Lorenz system are as 

follows: 

{
 
 

 
 

𝑑𝑥

𝑑𝑡
= 𝜎 ∗ (𝑦 − 𝑥),

𝑑𝑦

𝑑𝑡
= 𝑥 ∗ (𝜌 − 𝑧) − 𝑦

𝑑𝑧

𝑑𝑡
= 𝑥 ∗ 𝑦 − 𝛽 ∗ 𝑧.

,       (3) 

Here, x, y and z are state variables representing the state 

of the system at any given time, and [σ, ρ, β] are 

parameters. The values of these parameters are often used 

to demonstrate chaotic behavior. 

Lorenz system can be used to model and study various 

phenomena in different fields, including: 

- Meteorology and Climatology:  Effect of averaging 

timescale on a forced Lorenz model [13]; 

- Physics: A Nonlinear Oscillator Derived from the 

Lorenz Chaotic System [14]; 

- Engineering: Chaos control and synchronization of 

modified Lorenz system using active control and 

backstepping scheme [15]. 

Fig. 2, shows the result of the implementation of the 

Lorenz chaotic system in Python. 
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FIG. 2. Output image showing the simulation results for the 

Lorenz system. 

IV. DESCRIPTION OF THE RÖSSLER CHAOTIC  
The next mathematical model of chaotic behavior is the 

Rössler system, which is considered together with the 

Lorenz system classic examples of chaotic systems [7]. 

Rössler system was proposed in 1976 by the German 

scientist Otto Rössler (Otto E. Rössler) for description of 

chemical reactions occurring in the reactor with mixing. 

The system consists of three differential equations of the 

first order and contains only one nonlinearity:  

{
 
 

 
 

𝑑𝑥

𝑑𝑡
= −𝑦 − 𝑧,

𝑑𝑦

𝑑𝑡
= 𝑥 + 𝑎𝑦,

𝑑𝑧

𝑑𝑡
= 𝑏 + 𝑧 ∗ (𝑥 − 𝑐),

     (4) 

where x, y and z are state variables, and [a, b, c] are 

parameters. The system exhibits chaotic behavior at certain 

values of the parameters, which makes it an interesting 

object for studying chaos theory [8]. The Rössler system 

has been used to model a wide range of phenomena, 

including chemical reactions, population dynamics, and 

electrical circuits. It is also used as a teaching tool to 

introduce students to the concepts of chaos theory and 

nonlinear dynamics. The Rössler system differs from the 

Lorenz system by the type of the vector field of phase 

trajectories. In the Lorenz system the divergence is 

constant at any point in the phase space, negative and 

independent of the control parameter, while in the Rössler 

system the divergence is not constant and depends on the 

variable x and the control parameter c. 

The Rössler system is used in:  

- Chemical systems: Chaos control for Willamowski–

Rössler model of chemical reactions [16]; 

- Engineering and Electronics: Chaos control for the 

family of Rössler systems using feedback controllers [17]; 

- Biology and Medicine: Chaos Control Applied to 

Heart Rhythm Dynamics [18]. 

Fig. 3, shows the result of the implementation of the 

Rössler chaotic system in Python. 

V. DEPENDENCE OF INITIAL CONDITIONS FOR THE 
LORENZ, RÖSSLER AND CHUA SYSTEMS 

Python offers a plethora of data types, including float, 

int, str, dict, list, tuple, set, and others [9]. Each data type 

has its own specific applications and usage. This discussion 

will focus on the first two, float and int.  It  is  obvious that  

 
FIG. 3. Output image showing the simulation results for the 

Rössler system. 

chaotic signals are pretty dependent on the initial 

conditions. Let us consider the same data, however 

represented with different “int” and “flow” data kinds, For 

example we can call “initial_conditions_int” and 

“initial_conditions_float” and show how minor changes in 

the data representation can significantly affect the 

computational results, especially in cases with high 

sensitivity to initial conditions, as is observed in chaotic 

systems. 

Fig. 4 shows a code snippet that demonstrates the 

implementation of testing initial conditions for a chaotic 

Lorenz system using numbers of type Int and float. For 

other chaotic systems, the code structure remains similar, 

but the corresponding equation will be adapted to the 

specifics of each particular system. 

 

FIG. 4. Code for testing initial conditions with Int and float type. 

Figures 4 and 11 used the following set of Python 

libraries: the NumPy library provided efficient work with 

large multidimensional arrays and mathematical functions, 

while the SciPy library extended the capabilities of NumPy 

to perform complex scientific and technical calculations, 

including the integration of differential equations using the 

odeint function. To visualize the results, the Matplotlib 

library, which provides a complete toolkit for creating 

various static, animated, and interactive visualizations, was 

used. This set of libraries ensured effective modeling and 

visualization of chaotic systems. 
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As noted earlier, chaotic systems are sensitive to initial 

conditions. When the initial conditions of a chaotic system 

are switched from floating point to integer numbers, this 

causes a modification of the initial point in phase space. 

Therefore, a small change can lead to essentially different 

trajectories over time.  
When executing the code, we first observed that the 

trajectories of the floating-point system and the integer 

initial conditions coincided. However, over time, the 

behavior of the system began to differ significantly, which 

makes long-term prediction of the system's behavior 

impossible. The differences between integer modeling and 

floating-point modeling illustrate the sensitivity of the 

chaotic system to the initial conditions and their smallest 

difference during repeated solutions. 

Since even the smallest deviations in quantification or 

rounding can cause drastically different results, we can 

assume that rounding leads to a significant loss of 

accuracy, which has more profound consequences in 

chaotic systems than in more stable systems.  

In this example, we illustrated the ''Butterfly Effect'', a 

concept that describes how small reasons can have large 

outcomes, which includes how a flap of a butterfly's wings 

in China can trigger a tornado in Africa. Converting a 

floating point number to an integer is one such small reason 

that can completely change the behavior of a chaotic 

system. 

Figures 5 and 6 show the beginning and end of the 

simulation result for the Lorenz system for the initial 

conditions given with Int and float types. 

 

FIG. 5. Output image showing the output of the initial simulation 

for the Lorenz system for the initial conditions given with Int and 

float types. 

 

FIG. 6. Output image showing the end of simulation result for the 

Lorenz system for the initial conditions given with Int and float 

types. 

 
FIG. 7. Output image showing the start of simulation result for the 

Rössler system for the initial conditions given with Int and float 

types. 

 

FIG. 8. Output image showing the end of simulation result for the 

Rössler system for the initial conditions given with Int and float 

types. 

 
FIG. 9. Output image showing the initial simulation results for the 

Chua system for initial conditions with different decimal places. 

 

FIG. 10. Output image showing the final simulation results for the 

Chua system for initial conditions with different decimal places. 
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Figures 7 and 8 display the start and end of the 

simulation results for the Rössler system, using integer and 

floating-point initial conditions. Figures 9 and 10 present 

the initial and final simulation results for the Chua system, 

with integer and floating-point initial conditions. 

The results of the Lorenz, Rössler and Chua systems 

simulation (Figures 6, 8, 10) show that after a certain 

number of iterations, trajectories with different accuracies 

begin to diverge. Over time, this difference will only 

increase, indicating that without proper attention to the 

accuracy of calculations, the implementation of such 

systems in real hardware can lead to significant deviations 

in the operation of communication systems built on the 

basis of chaotic systems. 

The next step in the study is to check how the initial 

conditions change the modeling results with different 

accuracy. Fig. 11 shows the code for testing the initial 

conditions in the Lorenz system using different numbers of 

decimal places. This allows us to assess the impact of 

numerical precision on the dynamics of a chaotic system. 

For other chaotic systems, the structure of the code remains 

the same, but the system function must be adapted to the 

specifics of each particular system. To do this, we need to 

create a function that will round the initial conditions for 

each level of accuracy to 1, 2, and 3 decimal places, 

respectively. 

 
FIG. 11. Code for testing initial conditions with different decimal 

places. 

The initial and final simulation results for the Lorenz 

system with initial conditions with different decimal places 

are shown in Figures 12 and 13. Figures 14 and 15 illustrate 

the initial and final stages of the Rössler system simulation, 

with the initial conditions set to different decimal places. 

Figures 16 and 17 illustrate the initial and final stages of 

the Chua system simulation, with the initial conditions set 

to different decimal places.  

The simulation results of the Lorenz, Rössler and Chua 

systems (Figures 13, 15, 17) demonstrate the impact of 

varying numerical precision on the dynamics of chaotic 

systems. In particular, the simulation results indicate that 

the trajectories of systems with differing numbers of 

decimal places begin to diverge after a specific number of 

iterations. With increasing time this divergence increases. 

 

FIG. 12. Output image showing the initial simulation results for 

the Lorenz system for initial conditions with different decimal 

places. 

 

FIG. 13. Output image showing the final simulation results for the 

Lorenz system for initial conditions with different decimal places. 

 

FIG. 14. Output image showing the start of simulation result for 

the Rössler system for initial conditions with different decimal 

places. 

 

FIG. 15. Output image showing the end of simulation result for 

the Rössler for initial conditions with different decimal places. 
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FIG. 16. Output image showing the start of simulation result for 

the Chua system for initial conditions with different decimal 

places. 

 

FIG. 17. Output image showing the end of simulation result for 

the Chua system for initial conditions with different decimal 

places. 

The graphs showed a divergence of trajectories. As 

expected in chaotic systems, the modified trajectories 

differed over time from the initial trajectory, or in other 

words, the trajectory of full accuracy. This divergence is 

related to the sensitivity of the Lorenz system, where even 

small differences can quickly amplify, significantly 

altering the evolution of the system. An important 

observation was the speed of divergence of each trajectory 

from the reference behavior of full fidelity. Trajectories 

with more decimal places (more precise rounding) 

followed the reference more closely for a longer period of 

time before diverging, while trajectories with fewer 

decimal places (less precise rounding) diverged more 

quickly. 

VI. CONCLUSION 
Using  Python  simulations,  we  have  studied  the 

Chua, Lorenz and Rössler systems, classic examples of 

chaotic dynamics. By modelling these systems and 

visualizing their trajectories, we observed the emergence 

of complex behavior. Python proved to be a versatile tool 

for studying chaotic phenomena, offering insights into the 

sensitivity to initial conditions, the formation of 

characteristic patterns, and the dynamics of strange 

attractors. In microelectronics and in the context of digital 

systems and integrated circuits, floating point truncation to 

integer and rounding of numbers to 1, 2, 3 decimal places 

can be analogous to quantization errors in analogue-to-

digital conversion, where a continuous range of values 

must be represented by discrete levels due to the nature of 

digital systems. Such changes can affect the accuracy of 

systems and are a critical factor that engineers must 

consider. For example, it can affect timing accuracy, signal 

processing in a way that can potentially affect the 

reliability of telecommunications systems. In this way, 

Lorenz, Chua and Rössler's attractor experiments serve as 

a metaphor for the importance of accuracy in 

telecommunications systems: they illustrate how small 

changes in conditions or parameters can have a significant, 

sometimes unpredictable, impact on system behavior. This 

highlights the need for a careful and meticulous approach 

to the design and testing of telecommunications systems to 

ensure their reliability. 
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Дослідження впливу точності обчислення                        
на реалізацію хаотичних систем на Python                            

для захищених телекомунікаційних систем 
Микола Кушнір, Григорій Косован*, Владислав Мельник 

Кафедра радіотехніки та інформаційної безпеки, Чернівецького національного університету імені Юрія Федьковича, Чернівці, Україна 

*Автор-кореспондент (Електронна адреса: g.kosovan@chnu.edu.ua) 

АНОТАЦІЯ Ця стаття присвячена використанню мови програмування Python для візуалізації хаотичних моделей і 
дослідження впливу початкових умов у фізичних системах, зокрема, в моделях Чуа, Лоренца і Ресслера. Хаотичні 
системи є динамічними і чутливими до початкових умов, що робить їх непередбачуваними щодо того, як вони будуть 
поводитися і реагувати. Це означає, що в довгостроковій перспективі навіть невеликі зміни початкових умов можуть 
призвести до дуже різних результатів. Хаотичні системи вивчаються в різних наукових галузях, включаючи фізику, 
математику, біологію, інженерію та економіку. Python, найпопулярніша у світі мова наукового програмування, 
перетворює складні моделі на інтуїтивно зрозумілі візуалізації. У статті розкриваються можливості різних алгоритмів і 
бібліотек Python, що використовуються для візуалізації цих моделей з урахуванням їхньої специфіки. Основну увагу 
приділено трьом хаотичним моделям: об'єкту Чуа, який є універсальним прикладом хаотичної системи; атрактору 
Лоренца, який відомий своїми хаотичними властивостями; та обертальному осцилятору Ресслера, який широко 
використовується в таких галузях, як біологія, хімія, фізика та інженерія. Кожна модель детально розглядається, 
наводяться її ключові характеристики та параметри, а графіки цих моделей демонструються за допомогою симуляції 
на мові Python. Python, завдяки простоті використання та високій продуктивності, дозволяє вирішувати такі завдання 
швидко та ефективно. Насамкінець автори діляться своїми висновками щодо важливості початкових умов для систем 
Лоренца, Ресслера та Чуа, а також їхнього впливу на телекомунікаційні системи. Це дослідження дає уявлення про те, 
як Python, мова програмування з високим рівнем абстракції, дозволяє швидко і ефективно розробляти складні 
алгоритми і моделі, необхідні для роботи з хаотичними системами. Вона також дозволяє дослідникам та інженерам 
розробляти ефективні алгоритми для обробки сигналів та управління телекомунікаційними системами. 

КЛЮЧОВІ СЛОВА візуалізація хаотичних моделей, Python, моделі Чуа, Лоренца та Ресслера, динамічні системи, 
хаотичні системи.  
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