

p-ISSN 2786-8443, e-ISSN 2786-8451, 01002(7) |Yuriy Fedkovych Chernivtsi National University|www.chnu.edu.ua

2024 Vol 2, No 1

https://doi.org/10.31861/sisiot2024.1.01002

Received 20 May 2024; revised 22 August 2024; accepted 28 August 2024; published 30 August 2024

Advanced Data Aggregation in Online Education:
a Contextual Web Parser Approach

Kostiantyn Foksha1 and Ganna Zavolodko2,*
1Department of Multimedia and Internet technologies and systems, National Technical University "Kharkiv Polytechnic Institute", Kharkiv, Ukraine

2Department of Information system, National Technical University "Kharkiv Polytechnic Institute", Kharkiv, Ukraine

*Corresponding author (E-mail: anna.zavolodko@khpi.edu.ua)

ABSTRACT The paper presents a web aggregator system for collecting, filtering, and classifying data from educational
platforms, focusing on online courses. It describes the development and testing of a system that uses contextual search to
help users find courses matching their interests and knowledge level, while also handling spelling errors. The system's
effectiveness is established through tests demonstrating its capability for rapid data collection and update, providing
accurate and relevant results. The paper details the system's three-tier structure: data aggregation, user filtering, and user-
system interaction for tailored course recommendations. The development involves a Python web server, a MariaDB
database, a parser for non-formal education platforms, and a web application for client data presentation. In this paper also
highlight the system's scalability and potential for integration with other educational platforms. Emphasize the importance
of continuous updates to the database for maintaining relevance in a rapidly evolving online education landscape.
Additionally, the paper discusses future enhancements, including the implementation of advanced machine learning
algorithms for improved search accuracy and personalization, emphasizing the system's ongoing evolution to meet the
dynamic needs of online learners.

KEYWORDS web aggregator, online education platforms, course recommendation systems, contextual search, data
collection and filtering.

I. INTRODUCTION

n the ever-evolving landscape of education, the

proliferation of online learning platforms has

generated an unprecedented volume of educational

content. This requires advanced systems for efficient data

aggregation and management. This study focuses on the

development of a sophisticated web aggregator that uses

cutting-edge technologies, such as a Python-based web

server and a MariaDB database, to systematically collect,

filter and present educational data. The research

highlights the importance of non-formal education

platforms and is at the forefront of educational

technology. It offers a transformative tool that promises to

improve user engagement and learning outcomes. It

represents a step towards personalised and accessible

learning experiences, given the system's ability to adapt to

the dynamic nature of online education, and its potential

for scalability and integration with machine learning

algorithms. By providing actionable insights and fostering

an enriched educational ecosystem, the anticipated

outcomes of this research could make a significant

contribution to the field. The development uses a Python

web server, a MariaDB database that stores all

information about users and courses, a parser for

collecting data from non-formal education platforms that

then updates the server with new aggregated data, and a

web application for providing data to the client. It has

been developed by analysing and synthesising sources [1-

12].

The analysis in this article was conducted using

ChatGPT as a tool that allows to simplify routine work.

The use of ChatGPT in the study highlights its usefulness

in processing and analysing information from various

online educational platforms [13]. This integration

demonstrates the potential of artificial intelligence tools

such as ChatGPT to improve research methodologies and

provide in-depth insights into subject areas, especially in

the emerging field of online education and web data

aggregation.

Algorithms for aggregating data from the Internet

have not yet been studied, nor have possible approaches

to this been analyzed. The analysis of algorithms in this

work is based on various types of sites as well as their

methods of storing and providing information in context

of education platforms. In order for users to access

courses from other learning platforms on platformoEDU,

courses must be stored in the platform database. In order

to receive courses from different platforms in

platformoEDU, you need to use an information

aggregator that will scan data from other platforms and

update the relevant information. The general scheme of

the aggregator is shown in Figures 1, 2).

Among the requirements for the program are the

following main requirements:

1. Data collection validation – the program should

check the validity of the data.

2. Characterization – course data such as topic,

difficulty level, duration, etc.

3. Error handling – the program should be able to

handle errors, which should be recorded in the error

knowledge base to check the problem later.

4. Speed and efficiency – the selected tools for

I

2
Vol 2, No 1, Paper 01002, pp. 1-7 (2024)

SISIOT Journal | journals.chnu.edu.ua/sisiot

implementing the program should have the highest

efficiency among analogues.

5. Availability of data on the work process – the

program should provide the ability to display the

processes that occur in it during execution.

FIG. 1. Scheme of the web analyzer work.

FIG. 2. Scheme of the data aggregator.

II. ALGORITHM OF THE WEB AGGREGATOR
In the dynamic and ever-expanding realm of web data

extraction, the development and implementation of

effective web parsers are crucial. These tools are designed

to systematically navigate, extract, and process data from

various websites, each presenting unique structural and

content challenges. This section delves into the intricacies

of web parsers, outlining different strategies tailored to

the specific architectures of websites. We explore several

schemes: a general parser workflow, a parser operating

from the main page, another working with the /sitemap of

a website, and lastly, a parser that navigates through

categories.

Each of these approaches is meticulously crafted to

address the distinct characteristics and layouts of

websites, ensuring a comprehensive and efficient data

extraction process. From simple, main-page-focused

structures to more complex, category-based or /sitemap-

oriented designs, these parsing strategies demonstrate the

adaptability and precision required in modern web data

collection. Understanding these schemes provides

invaluable insights into the mechanics of web scraping, a

process integral to the vast domain of data-driven analysis

and decision-making in today's digital world.Depending

on the structure of the website, the approach to collecting

data from the platform also changes - some sites store

links in /sitemap, some provide a list of pages in xml,

others in links to categories, etc.

Data processing algorithms depend on the content of

the page, the structure of the web page, the type and

format of data, the volume and complexity of data, data

availability, website limitations, and other factors, but we

can distinguish the general scheme of a web parser.

Fig. 3 illustrates the general workflow of a web parser.

The process begins with obtaining the website's URL,

followed by the acquisition of a list of processed pages.

This is key to ensure that the parser does not revisit pages

already present in the database. Should the list reveal

unprocessed pages, the system proceeds to collect

information from these pages. Upon completing the

collection from all pages, the database is updated

accordingly. The process concludes once the update is

finished, signifying the end of the cycle. This workflow

adapts to various website structures and data formats,

ensuring flexibility in data collection and processing.

FIG. 3. General scheme of the web parser workflow.

A. Scheme of the web parser from the main page. This

scheme is suitable for collecting data from a website

where the links to the data to be collected are located on

the main page and are not available at the /sitemap URL.

The parser collects links to pages and then collects data

from these pages. The parser scheme is shown in Fig. 3.

The code of the program that implements the parser

according to this scheme is shown in Fig. 4

Fig. 4 presents a scheme for a web parser designed to

operate from the main page of a website. This specific

scheme is tailored for instances where the data links are

located directly on the main page rather than through a

/sitemap URL. The parser starts by getting the URL, then

checks if all the pages have been collected. If not, it

collects data from the current page. Once all pages are

collected, the parser extracts the data, updating it

accordingly. After the update, the process ends. This

scheme is particularly efficient for websites with a simple

structure where all necessary links are immediately

accessible from the homepage.

3
Vol 2, No 1, Paper 01002, pp. 1-7 (2024)

SISIOT Journal | journals.chnu.edu.ua/sisiot

FIG. 4. Parser scheme from the main page.

B. Scheme of how a web parser works with /sitemap.
This scheme is suitable for a site where the data to be

collected is located on the links located in the /sitemap

branch of the site. The parser scheme is shown in Fig. 5.

FIG. 5. Scheme of the parser with /sitemap.

Fig. 5 depicts a workflow for a web parser that

navigates a site's /sitemap. This approach is optimized for

websites that organize the data to be collected within the

/sitemap directory. The process begins with retrieving the

site's URL, followed by accessing the /sitemap. It then

extracts existing data to determine what needs to be

updated. The parser checks if all necessary data has been

parsed. If not, it proceeds to collect the current course

data. Once all data is collected and parsed, it updates the

database, concluding the operation with the end of the

data update. This methodical approach ensures a thorough

and systematic collection of data.

C. Scheme of web parser operation by category. This

scheme is suitable for collecting data from a website

where the data is linked to categofies. The parser scheme

is shown in Fig. 6.

Fig. 6 outlines a parser workflow designed for websites

where data is organized by category. The process begins

FIG. 6. Parser scheme by category.

with obtaining the main URL, then it retrieves the URLs

for each category. The parser systematically visits each

category, checking if there are more pages within the

category to parse. If not, it collects data from the current

category page. This cycle repeats until data from all

categories has been collected. Once the collection is

complete, the data is updated in the system, and the

process ends. This scheme is particularly useful for

structured websites with distinct categories of

information.

III. DATA OUTPUT
In this crucial section, we delve into the data output

phase of the web aggregator's operation, a fundamental

aspect of web scraping and data collection processes. This

phase not only represents the culmination of the data

extraction effort but also provides critical insights into the

efficiency and effectiveness of the web aggregator. We

will explore various facets of this process, starting with

the data collection process, where we analyze the output

displayed during the aggregator's operation. This includes

details such as the source of data, the volume of data

already existing in the knowledge base, the amount of

new data collected, and the time taken for each operation.

Illustrative Figures, such as Fig. 7 and Fig. 8, will

shed light on the initial and subsequent executions of the

program, revealing how the aggregator adapts and

responds to the changing data landscape across different

platforms. We will discuss the implications of these

results, including the efficiency of data collection and the

update mechanisms in place.

Following this, we will delve into the structuring and

management of the knowledge base. This includes the

transformation of raw data into a structured and easily

navigable format, as exemplified in Fig. 9, which

showcases the data organized in an Excel spreadsheet.

This step is crucial for ensuring that the data is not only

collected but also presented in a manner that is accessible

and useful for further analysis or application.

Finally, we will examine how the aggregated data is

integrated into the platform, with a focus on the user

4
Vol 2, No 1, Paper 01002, pp. 1-7 (2024)

SISIOT Journal | journals.chnu.edu.ua/sisiot

interface and data accessibility, as demonstrated in Fig. 10.

This section will highlight the practical applications of the

aggregated data and the ease with which users can interact

with and benefit from the collected information.

Overall, this section aims to provide a comprehensive

understanding of the data output stage in web

aggregation, emphasizing the importance of efficient data

handling, organization, and presentation in making the

collected data valuable and actionable.

A. Data collection process. When the aggregator is

tunning, the console displays information that shows the

result of the program. It displays the site from which the

data is collected, the amount of data from this platform

that is already in the knowledge base, the amount ofdata

that was collected, and the time it took the program to

complete the work. The result of the first lun of the

program with a limited amount of data is shown in Fig. 7.

FIG. 7. The result of running the program for the first time.

Upon the initial execution of the web aggregator

program, it was observed that the database started empty

for each platform. The program successfully collected

data from Coursera, Sololearn, Alison, and edX, adding

the new course information to the knowledge base. The

duration of the program's operation varied, reflecting the

different data collection methods adapted for each

platform's unique structure. A subsequent run of the

program, with limitations on the volume of data still in

place, would yield further insights into the aggregator's

efficiency and the potential incremental additions to the

database. The outcomes of this second run are presented

in Fig. 8, which is not included here.

FIG. 8. The result of the second execution of the program.

Fig. 8 displays the console output after the second

execution of the web aggregator program. It shows the

parsing process of the same educational platforms as in

the first run. However, this time, no new courses were

found on Coursera and edX, indicating that the previous

data from these platforms was up-to-date. In contrast,

additional courses were found for Alison, doubling the

total count in the database for this platform. The parsing

times for each site are also noted, with Coursera taking

the longest at 68 seconds and Sololearn the shortest at 10

seconds, showcasing the system's capability to efficiently

check for new data and update the database accordingly.

B. Knowledge base. Comparing the execution time with

the first lun, it is noted that some programs were faster but

did not collect any data - this is because the data selection

algorithm collected data according to the test mode

constraints and then removed from the list of data those

that are already in the knowledge base, which

demonstrates that the programs select only data for

processing that does not yet have infonnation, and that all

data was collected successfully on the first attempt. The

third program managed to collect the same amount of data

as the first time, because the collection algorithm includes

collecting all links from sitemap, removing existing links,

and collecting data about new ones.

С. Update data in the knowledge base. After collecting

the data, we will output the data to an excel file for easy

viewing. The data obtained are shown in Fig. 9.

Fig. 9 exhibits a snapshot of the knowledge base

output to an Excel file after data collection. The

FIG. 9. The data obtained.

5
Vol 2, No 1, Paper 01002, pp. 1-7 (2024)

SISIOT Journal | journals.chnu.edu.ua/sisiot

spreadsheet includes detailed columns such as title,

description, author, link, image, duration, rate, student

count, document language, price, difficulty level,

platform, and tags. This format allows for an organized

and accessible presentation of the collected data,

showcasing the diversity of courses extracted from the

educational platforms. The data spans various subjects

and shows key information, facilitating easy sorting and

analysis.

The data obtained as a result of the relationship is then

entered into the platform by the operator. For

convenience, let's add the name of the platform to the

course name to see data from all platforms. The result of

adding courses to the platform is shown in Fig. 10.

Fig. 10 displays the database interface where course

data, collected from various online educational platforms,

has been entered. Each course entry includes the

platform's name prefixed to the course title, enabling a

clear and organized view of the aggregated data across

multiple sources. This naming convention ensures that

users can easily identify the origin of each course and

facilitates efficient navigation through the database.

FIG. 10. Database.

IV. TESTING

To compare the colTectness of the program, 3 tests

were perfonned – from a small amount of data (the

limitation depends on the data processing method), to

analysis over the entire intelval. The table comparing the

program results is shown in Table 1. A comparison ofthe

program speed per data unit per second is shown in

Fig. 11.

Table 1 provides a detailed comparison of the results

from three different tests conducted to evaluate the

performance of the developed aggregator across various

platforms including Coursera, Alison, Sololearn, and edX.

For each attempt, the table lists the time taken in seconds,

the amount of data collected (measured in units), the time

efficiency calculated as time per unit, and the number of

errors encountered. Over the three tests, we see a

variation in the time efficiency and accuracy, with the

first attempt being the most error-free across all

platforms. As the volume of data increases in subsequent

attempts, there's a noticeable increase in both time taken

and errors, suggesting a correlation between the dataset

size and the likelihood of errors. This table serves as a

benchmark for assessing the aggregator's efficiency and

reliability.

The bar graph in Fig. 11 compares the operational

speed of the web aggregator across four different

educational platforms: Coursera, edX, Sololearn, and

Alison. Each platform is represented by a different color,

and the height of each bar corresponds to the time

TABLE 1. Comparsion of the results of the developed aggegator.

Attempt Characteristics

Platform

Coursera Alison Sololearn Edx

1 Time (s) 17 35 8 204

Amount of

data (units)

60 10 5 32

Time per

unit (s)

0.28 3.5 1.6 6.37

Errors

(units)

0 0 0 0

2 Time (s) 422 115 14 506

Amount of

data (units)

1764 30 15 64

Time per

unit (s)

0.24 3.83 0.9 7.9

Errors

(units)

2 0 0 0

3 Time (s) 4655 13647 12 3056

Amount of

data (units)

8766 3791 27 456

Time per

unit (s)

0.53 3.59 0.44 6.7

Errors

(units)

15 10 0 1

efficiency in processing the data. From the graph, we can

observe that Coursera and Sololearn exhibit a higher

speed of operation compared to Alison and edX,

indicating a more efficient data processing capability in

the former two. The comparison highlights the variance in

processing times and could be used to identify

performance benchmarks for each platform.

FIG. 11. Compalison of speed of operation.

Let's test adding 1000 courses to the database. The

result is shown in Fig. 12.

FIG. 12. The result of adding courses to the database.

As a result of adding data to sites, all data is added

successfully without exception

V. CONCLUSIONS

The result entitled has shed light on the effectiveness

of the developed Web aggregator for collecting, filtering,

and categorizing information from varied online learning

environments. It emphasizes the successful execution of

distinct parser configurations that have been fine-tuned to

accommodate diverse web architectures, leading to

6
Vol 2, No 1, Paper 01002, pp. 1-7 (2024)

SISIOT Journal | journals.chnu.edu.ua/sisiot

proficient gathering and updating of data. The

aggregator's capability to neatly compile this information

within the knowledge base and via the user interface is

also showcased. The paper underscores the necessity for

constant updates and the possible incorporation with

machine learning technologies to boost customization and

precision, thereby demonstrating the system's flexibility

and growth potential within the dynamic realm of online

education. Test findings underline the aggregator's speed

and dependability, affirming its value in supporting non-

formal education platforms. In conclusion, the research

presents several strategies on how to synthesize and

manage data from websites with varying storage and

presentation methods.

AUTHOR CONTRIBUTIONS
K.F., G.Z. – conceptualization, methodology,

investigation, writing (original draft preparation), writing

(review and editing).

COMPETING INTERESTS
The authors declare no competing interests.

REFERENCES
[1] Intrоductiоn tо the DОM. [Online]. Available:

https://developer.mozilla.org/en-

US/docs/Web/API/Document_Object_Model/Introduction.

[2] Rоbie J. What is the Dоcument Оbject Mоdel? [Online].

Available: https://www.w3.org/TR/WD-

DOM/introduction.html.

[3] Matyash D. Navishcho potribni sayty-ahrehatory, chomu

Google yikh tak lyubytʹ? [Online]. Available:

https://jam.in.ua/blog/navishcho-potribni-sajty-ahrehatory-

chomu-google-ikh-tak-liubyt/. [in Ukrainian]

[4] Shcho take kraulinh i yak keruvaty robotamy. [Online].

Available: https://www.bizmaster.xyz/2019/04/schо-take-

krauling-i-yak-keruvaty-rоbоtamy.html. [in Ukrainian]

[5] Hendersоn A. "15 Best FREE Website Crawler Tооls &

Sоftware (2023 Update)." [Online]. Available:

https://www.guru99.com/web-crawling-tools.html.

[6] Digital Cоmmerce Intelligence. [Online]. Available:

https://www.dexi.io/.

[7] Horobtsov V. Yak vykorystovuvaty web scraper dlya

zboru danykh z internetu z Python. [Online]. Available:

https://dou.ua/forums/topic/43070/. [in Ukrainian]

[8] What is an API? [Online]. Available: https://

www.ibm.com/topics/api.

[9] Whitehead C. T. What Is an RSS Feed? (And Where tо

Get It). [Online]. Available: https://www.lifewire.com/

what-is-an-rss-feed-4684568.

[10] Requests: HTTP fоr Humans™. [Online]. Available:

https://dоcs.pythоn-requests.оrg/en/latest/index.html.

[11] Daityari S. "App & Brоwser Testing Made Easy."

[Online]. Available: https://www.brоwserstack.cоm/guide/

pythоn-selenium-tо-run-web-autоmatiоn-test.

[12] Web Scraping with Selenium and Pythоn Tutоrial +

Example Prоject. [Online]. Available: https://scrapfly.iо/

blоg/web-scraping-with-selenium-and-pythоn/.

[13] F.M.M. Morrison, N. Rezaei, A.G. Arero, V. Graklanov,

S. Iritsyan, M. Ivanovska, R. Makuku, L.P. Marquez, K.

Minakova, L.P. Mmema, P. Rzymski, G. Zavolodko,

"Maintaining scientific integrity and high research

standards against the backdrop of rising artificial

intelligence use across fields," J. Med. Artif. Intell., vol. 6,

2023.

Kostiantyn Foksha

NTU “KhPI” student, computer

scientist, IEEE Extreme 17

participant.

ORCID ID: 0000-0001-7119-0401

Ganna Zavolodko

PhD in Informstion technology,

Associate Professor of NTU "KPI",

IEEE Senior.

ORCID ID: 0000-0003-0000-8910

Просунута агрегація даних в онлайн-освіті:
підхід контекстного веб-парсеру

Констянтин Фокша1, Ганна Заволодко2,*
1MITC, КН, НТУ «ХПІ», Харків, Україна

2СІ, ІКМ, НТУ «ХПІ», Харків, Україна

*Автор-кореспондент (Електронна адреса: E-mail: anna.zavolodko@khpi.edu.ua)

АНОТАЦІЯ У статті представлено структуру веб-агрегатора для збору, фільтрації та класифікації даних з освітніх
платформ, зосереджених на онлайн-курсах. Показано архітектуру та результати тестування розробки, яка агрегує
данні для системи, яка використовує контекстний пошук, щоб допомогти користувачам знайти курси, які
відповідають їхнім інтересам та рівню знань, а також обробляє орфографічні помилки. Описано основні архітектурні
елементи розробленого модулю. Ефективність системи підтверджується тестами, які демонструють її здатність до
швидкого збору та оновлення даних, надання точних і релевантних результатів. У статті детально описано трирівневу

https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
https://www.w3.org/TR/WD-DOM/introduction.html
https://www.w3.org/TR/WD-DOM/introduction.html
https://jam.in.ua/blog/navishcho-potribni-sajty-ahrehatory-chomu-google-ikh-tak-liubyt/
https://jam.in.ua/blog/navishcho-potribni-sajty-ahrehatory-chomu-google-ikh-tak-liubyt/
https://www.bizmaster.xyz/2019/04/schо-take-krauling-i-yak-keruvaty-rоbоtamy.html
https://www.bizmaster.xyz/2019/04/schо-take-krauling-i-yak-keruvaty-rоbоtamy.html
https://www.guru99.com/web-crawling-tools.html
https://www.dexi.io/
https://dou.ua/forums/topic/43070/
https://www.ibm.com/topics/api
https://www.ibm.com/topics/api
https://www.lifewire.com/what-is-an-rss-feed-4684568
https://www.lifewire.com/what-is-an-rss-feed-4684568
https://dоcs.pythоn-requests.оrg/en/latest/index.html
https://scrapfly.iо/blоg/web-scraping-with-selenium-and-pythоn/
https://scrapfly.iо/blоg/web-scraping-with-selenium-and-pythоn/
https://orcid.org/0000-0001-7119-0401
https://orcid.org/0000-0003-0000-8910

7
Vol 2, No 1, Paper 01002, pp. 1-7 (2024)

SISIOT Journal | journals.chnu.edu.ua/sisiot

структуру системи: агрегація даних, фільтрація користувачів та взаємодія користувача з системою для надання
індивідуальних рекомендацій щодо курсів. Розробка включає веб-сервер на мові Python, базу даних MariaDB для
зберігання результатів парсингу, парсер, який оснований на використанні бібліотек для платформ неформальної
освіти та модуль міграції для кросплатформеного веб-додатку для представлення даних клієнтам. У цій статті також
підкреслимо масштабованість та потенціал продуктового рішення для інтеграції з іншими освітніми платформами.
Підкреслюється важливість постійного оновлення бази даних для підтримання її актуальності у швидкозмінному
ландшафті онлайн-освіти. Для цього пропонується зробити модулі для авто адаптаціЇ під змінні умови. Крім того, в
документі обговорюються майбутні вдосконалення, включаючи впровадження передових алгоритмів машинного
навчання для підвищення точності пошуку та персоналізації, підкреслюючи постійну еволюцію системи для
задоволення динамічних потреб онлайн-учнів. Таким чином, стаття підсумовує досвід розробки рішення для
ефективної взаємодії з освітніми ресурсами, спрямованого на забезпечення якісного підбору навчальних курсів і
підвищення зручності користування онлайн-освітніми платформами.

КЛЮЧОВІ СЛОВА веб-агрегатор, платформи онлайн-освіти, контекстний пошук, фільтрація даних, неформальна
освіта.

This article is licensed under a Creative Commons Attribution 4.0 International License.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://creativecommons.org/licenses/by/4.0/

