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ABSTRACT The paper presents a web aggregator system for collecting, filtering, and classifying data from educational
platforms, focusing on online courses. It describes the development and testing of a system that uses contextual search to
help users find courses matching their interests and knowledge level, while also handling spelling errors. The system's
effectiveness is established through tests demonstrating its capability for rapid data collection and update, providing
accurate and relevant results. The paper details the system's three-tier structure: data aggregation, user filtering, and user-
system interaction for tailored course recommendations. The development involves a Python web server, a MariaDB
database, a parser for non-formal education platforms, and a web application for client data presentation. In this paper also
highlight the system's scalability and potential for integration with other educational platforms. Emphasize the importance
of continuous updates to the database for maintaining relevance in a rapidly evolving online education landscape.
Additionally, the paper discusses future enhancements, including the implementation of advanced machine learning
algorithms for improved search accuracy and personalization, emphasizing the system's ongoing evolution to meet the
dynamic needs of online learners.

KEYWORDS web aggregator, online education platforms, course recommendation systems, contextual search, data

collection and filtering.

. INTRODUCTION
n the ever-evolving landscape of education, the
| proliferation of online learning platforms has
generated an unprecedented volume of educational
content. This requires advanced systems for efficient data
aggregation and management. This study focuses on the
development of a sophisticated web aggregator that uses
cutting-edge technologies, such as a Python-based web
server and a MariaDB database, to systematically collect,
filter and present educational data. The research
highlights the importance of non-formal education
platforms and is at the forefront of educational
technology. It offers a transformative tool that promises to
improve user engagement and learning outcomes. It
represents a step towards personalised and accessible
learning experiences, given the system's ability to adapt to
the dynamic nature of online education, and its potential
for scalability and integration with machine learning
algorithms. By providing actionable insights and fostering
an enriched educational ecosystem, the anticipated
outcomes of this research could make a significant
contribution to the field. The development uses a Python
web server, a MariaDB database that stores all
information about users and courses, a parser for
collecting data from non-formal education platforms that
then updates the server with new aggregated data, and a
web application for providing data to the client. It has
been developed by analysing and synthesising sources [1-
12].
The analysis in this article was conducted using
ChatGPT as a tool that allows to simplify routine work.

The use of ChatGPT in the study highlights its usefulness
in processing and analysing information from various
online educational platforms [13]. This integration
demonstrates the potential of artificial intelligence tools
such as ChatGPT to improve research methodologies and
provide in-depth insights into subject areas, especially in
the emerging field of online education and web data
aggregation.

Algorithms for aggregating data from the Internet
have not yet been studied, nor have possible approaches
to this been analyzed. The analysis of algorithms in this
work is based on various types of sites as well as their
methods of storing and providing information in context
of education platforms. In order for users to access
courses from other learning platforms on platformoEDU,
courses must be stored in the platform database. In order
to receive courses from different platforms in
platformoEDU, you need to use an information
aggregator that will scan data from other platforms and
update the relevant information. The general scheme of
the aggregator is shown in Figures 1, 2).

Among the requirements for the program are the
following main requirements:

1. Data collection validation — the program should
check the validity of the data.

2. Characterization — course data such as topic,
difficulty level, duration, etc.

3. Error handling — the program should be able to
handle errors, which should be recorded in the error
knowledge base to check the problem later.

4. Speed and efficiency — the selected tools for
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implementing the program should have the highest
efficiency among analogues.

5. Availability of data on the work process — the
program should provide the ability to display the
processes that occur in it during execution.

<t
Ju
=
T
prostoEDL

python

Prosto

(] | .
update
P data
prostolED1
web

-

aggrégated

gata

Upformal
cducation
platform

FIG. 1. Scheme of the web analyzer work.
scheduler
—
i 3

:rﬁ'.CEﬂ
M

updates
data

Launch

Agpregator
(data

analyser) )
initiahizes|Parsing
platforn Analize
pages pages =

non-forma
cducation
Wlatforms

= Rules base
Rule 1

Rulen

FIG. 2. Scheme of the data aggregator.

Il. ALGORITHM OF THE WEB AGGREGATOR

In the dynamic and ever-expanding realm of web data
extraction, the development and implementation of
effective web parsers are crucial. These tools are designed
to systematically navigate, extract, and process data from
various websites, each presenting unique structural and
content challenges. This section delves into the intricacies
of web parsers, outlining different strategies tailored to
the specific architectures of websites. We explore several
schemes: a general parser workflow, a parser operating
from the main page, another working with the /sitemap of
a website, and lastly, a parser that navigates through
categories.

Each of these approaches is meticulously crafted to
address the distinct characteristics and layouts of
websites, ensuring a comprehensive and efficient data
extraction process. From simple, main-page-focused
structures to more complex, category-based or /sitemap-
oriented designs, these parsing strategies demonstrate the
adaptability and precision required in modern web data
collection. Understanding these schemes provides
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invaluable insights into the mechanics of web scraping, a
process integral to the vast domain of data-driven analysis
and decision-making in today's digital world.Depending
on the structure of the website, the approach to collecting
data from the platform also changes - some sites store
links in /sitemap, some provide a list of pages in xml,
others in links to categories, etc.

Data processing algorithms depend on the content of
the page, the structure of the web page, the type and
format of data, the volume and complexity of data, data
availability, website limitations, and other factors, but we
can distinguish the general scheme of a web parser.

Fig. 3 illustrates the general workflow of a web parser.
The process begins with obtaining the website's URL,
followed by the acquisition of a list of processed pages.
This is key to ensure that the parser does not revisit pages
already present in the database. Should the list reveal
unprocessed pages, the system proceeds to collect
information from these pages. Upon completing the
collection from all pages, the database is updated
accordingly. The process concludes once the update is
finished, signifying the end of the cycle. This workflow
adapts to various website structures and data formats,
ensuring flexibility in data collection and processing.
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FIG. 3. General scheme of the web parser workflow.

A. Scheme of the web parser from the main page. This
scheme is suitable for collecting data from a website
where the links to the data to be collected are located on
the main page and are not available at the /sitemap URL.
The parser collects links to pages and then collects data
from these pages. The parser scheme is shown in Fig. 3.
The code of the program that implements the parser
according to this scheme is shown in Fig. 4

Fig. 4 presents a scheme for a web parser designed to
operate from the main page of a website. This specific
scheme is tailored for instances where the data links are
located directly on the main page rather than through a
/sitemap URL. The parser starts by getting the URL, then
checks if all the pages have been collected. If not, it
collects data from the current page. Once all pages are
collected, the parser extracts the data, updating it
accordingly. After the update, the process ends. This
scheme is particularly efficient for websites with a simple
structure where all necessary links are immediately
accessible from the homepage.
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FIG. 4. Parser scheme from the main page.

B. Scheme of how a web parser works with /sitemap.
This scheme is suitable for a site where the data to be
collected is located on the links located in the /sitemap
branch of the site. The parser scheme is shown in Fig. 5.
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FIG. 5. Scheme of the parser with /sitemap.

Fig. 5 depicts a workflow for a web parser that
navigates a site's /sitemap. This approach is optimized for
websites that organize the data to be collected within the
/sitemap directory. The process begins with retrieving the
site's URL, followed by accessing the /sitemap. It then
extracts existing data to determine what needs to be
updated. The parser checks if all necessary data has been
parsed. If not, it proceeds to collect the current course
data. Once all data is collected and parsed, it updates the
database, concluding the operation with the end of the
data update. This methodical approach ensures a thorough
and systematic collection of data.

C.Scheme of web parser operation by category. This
scheme is suitable for collecting data from a website
where the data is linked to categofies. The parser scheme
is shown in Fig. 6.

Fig. 6 outlines a parser workflow designed for websites
where data is organized by category. The process begins
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FIG. 6. Parser scheme by category.

with obtaining the main URL, then it retrieves the URLs
for each category. The parser systematically visits each
category, checking if there are more pages within the
category to parse. If not, it collects data from the current
category page. This cycle repeats until data from all
categories has been collected. Once the collection is
complete, the data is updated in the system, and the
process ends. This scheme is particularly useful for
structured  websites with  distinct categories  of
information.

I1l. DATA OUTPUT

In this crucial section, we delve into the data output
phase of the web aggregator's operation, a fundamental
aspect of web scraping and data collection processes. This
phase not only represents the culmination of the data
extraction effort but also provides critical insights into the
efficiency and effectiveness of the web aggregator. We
will explore various facets of this process, starting with
the data collection process, where we analyze the output
displayed during the aggregator's operation. This includes
details such as the source of data, the volume of data
already existing in the knowledge base, the amount of
new data collected, and the time taken for each operation.

Illustrative Figures, such as Fig.7 and Fig. 8, will
shed light on the initial and subsequent executions of the
program, revealing how the aggregator adapts and
responds to the changing data landscape across different
platforms. We will discuss the implications of these
results, including the efficiency of data collection and the
update mechanisms in place.

Following this, we will delve into the structuring and
management of the knowledge base. This includes the
transformation of raw data into a structured and easily
navigable format, as exemplified in Fig.9, which
showcases the data organized in an Excel spreadsheet.
This step is crucial for ensuring that the data is not only
collected but also presented in a manner that is accessible
and useful for further analysis or application.

Finally, we will examine how the aggregated data is
integrated into the platform, with a focus on the user
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interface and data accessibility, as demonstrated in Fig. 10.
This section will highlight the practical applications of the
aggregated data and the ease with which users can interact
with and benefit from the collected information.

Overall, this section aims to provide a comprehensive
understanding of the data output stage in web
aggregation, emphasizing the importance of efficient data
handling, organization, and presentation in making the
collected data valuable and actionable.

A. Data collection process. When the aggregator is
tunning, the console displays information that shows the
result of the program. It displays the site from which the
data is collected, the amount of data from this platform
that is already in the knowledge base, the amount ofdata
that was collected, and the time it took the program to
complete the work. The result of the first lun of the
program with a limited amount of data is shown in Fig. 7.
PS D:\study\WebScrapper> & "C:/Program Files/python311/python.exe™ d:study/WebScrapper/main.py
Parsing https://coursera.org

DB has 0 courses from coursera

Done. Coursera parsed with 1764 courses. Total of 1764 courses in DataBase. Parsing time: 422sec
Parsing https://sololearn.com

DB has 0 courses from sololearn

Done. Sololearn parsed with 27 courses. Total of 27 courses in DataBase. Parsing time: 36sec
Parsing https://alison.com

DB has 0 courses from alison

Done. Alison parsed with 30 courses. Total of 30 courses in DataBase. Parsing time: 115sec
Parsing https://edx.com

DB has 0 courses from edx
Done. Edx parsed with 64 courses. Total of 64 courses in DataBase. Parsing time: 506sec

FIG. 7. The result of running the program for the first time.

Upon the initial execution of the web aggregator
program, it was observed that the database started empty
for each platform. The program successfully collected
data from Coursera, Sololearn, Alison, and edX, adding
the new course information to the knowledge base. The
duration of the program's operation varied, reflecting the
different data collection methods adapted for each
platform's unique structure. A subsequent run of the
program, with limitations on the volume of data still in
place, would yield further insights into the aggregator's
efficiency and the potential incremental additions to the
database. The outcomes of this second run are presented
in Fig. 8, which is not included here.

FIG. 9. The data obtained.

Vol 2, No 1, Paper 01002, pp. 1-7 (2024)

PS D:\study\WebScrapper> & "C:/Program Files/python311/python.exe” d:study/WebScrapper/main.py
Parsing https://coursera.org

DB has 1764 courses from coursera

Done. Coursera parsed with 0 courses. Total of 1764 courses in DataBase. Parsing time: 68sec
Parsing https://sololearn.com

DB has 27 courses from sololearn

Done. Sololearn parsed with 0 courses. Total of 27 courses in DataBase. Parsing time: 10sec
Parsing https://alison.com

DB has 30 courses from alison

Done. Alison parsed with 30 courses. Total of 60 courses in DataBase. Parsing time: 108sec
Parsing htrps://edx.com

DB has 64 courses from edx
Done. Edx parsed with 0 courses. Total of 64 courses in DataBase. Parsing time: 31sec

FIG. 8. The result of the second execution of the program.

Fig. 8 displays the console output after the second
execution of the web aggregator program. It shows the
parsing process of the same educational platforms as in
the first run. However, this time, no new courses were
found on Coursera and edX, indicating that the previous
data from these platforms was up-to-date. In contrast,
additional courses were found for Alison, doubling the
total count in the database for this platform. The parsing
times for each site are also noted, with Coursera taking
the longest at 68 seconds and Sololearn the shortest at 10
seconds, showcasing the system's capability to efficiently
check for new data and update the database accordingly.

B. Knowledge base. Comparing the execution time with
the first lun, it is noted that some programs were faster but
did not collect any data - this is because the data selection
algorithm collected data according to the test mode
constraints and then removed from the list of data those
that are already in the knowledge base, which
demonstrates that the programs select only data for
processing that does not yet have infonnation, and that all
data was collected successfully on the first attempt. The
third program managed to collect the same amount of data
as the first time, because the collection algorithm includes
collecting all links from sitemap, removing existing links,
and collecting data about new ones.

C. Update data in the knowledge base. After collecting
the data, we will output the data to an excel file for easy
viewing. The data obtained are shown in Fig. 9.

Fig. 9 exhibits a snapshot of the knowledge base
output to an Excel file after data collection. The

A | ac 0 AE | A
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spreadsheet includes detailed columns such as title,
description, author, link, image, duration, rate, student
count, document language, price, difficulty level,
platform, and tags. This format allows for an organized
and accessible presentation of the collected data,
showcasing the diversity of courses extracted from the
educational platforms. The data spans various subjects
and shows key information, facilitating easy sorting and
analysis.

The data obtained as a result of the relationship is then
entered into the platform by the operator. For
convenience, let's add the name of the platform to the
course name to see data from all platforms. The result of
adding courses to the platform is shown in Fig. 10.

Fig. 10 displays the database interface where course
data, collected from various online educational platforms,
has been entered. Each course entry includes the
platform's name prefixed to the course title, enabling a
clear and organized view of the aggregated data across
multiple sources. This naming convention ensures that
users can easily identify the origin of each course and
facilitates efficient navigation through the database.

FIG. 10. Database.

IV. TESTING

To compare the colTectness of the program, 3 tests
were perfonned — from a small amount of data (the
limitation depends on the data processing method), to
analysis over the entire intelval. The table comparing the
program results is shown in Table 1. A comparison ofthe
program speed per data unit per second is shown in
Fig. 11.

Table 1 provides a detailed comparison of the results
from three different tests conducted to evaluate the
performance of the developed aggregator across various
platforms including Coursera, Alison, Sololearn, and edX.
For each attempt, the table lists the time taken in seconds,
the amount of data collected (measured in units), the time
efficiency calculated as time per unit, and the number of
errors encountered. Over the three tests, we see a
variation in the time efficiency and accuracy, with the
first attempt being the most error-free across all
platforms. As the volume of data increases in subsequent
attempts, there's a noticeable increase in both time taken
and errors, suggesting a correlation between the dataset
size and the likelihood of errors. This table serves as a
benchmark for assessing the aggregator's efficiency and
reliability.

The bar graph in Fig. 11 compares the operational
speed of the web aggregator across four different
educational platforms: Coursera, edX, Sololearn, and
Alison. Each platform is represented by a different color,
and the height of each bar corresponds to the time
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TABLE 1. Comparsion of the results of the developed aggegator.

Platform

Attempt  Characteristics )

Coursera  Alison  Sololearn  Edx

1 Time (s) 17 35 8 204
Amount of 60 10 5 32
data (units)

Time per 0.28 35 1.6 6.37
unit (s)

Errors 0 0 0 0
(units)

2 Time (s) 422 115 14 506
Amount of 1764 30 15 64
data (units)

Time per 0.24 3.83 0.9 79
unit (s)

Errors 2 0 0 0
(units)

3 Time () 4655 13647 12 3056
Amount of 8766 3791 27 456
data (units)

Time per 0.53 3.59 0.44 6.7
unit (s)

Errors 15 10 0 1
(units)

efficiency in processing the data. From the graph, we can
observe that Coursera and Sololearn exhibit a higher
speed of operation compared to Alison and edX,
indicating a more efficient data processing capability in
the former two. The comparison highlights the variance in
processing times and could be used to identify
performance benchmarks for each platform.

W Coursera

W EdX

Solalearn

O N B OO ®

M Alison

[y 5y

FIG. 11. Compalison of speed of operation.

Let's test adding 1000 courses to the database. The
result is shown in Fig. 12.

BubGepiTb scrapper course wot 3sMiHATH

Bnepes 031000 o6paHo
‘SCRAPPER COURSE
English Course - Expressions (Upper-Intermediate Level)
English Course - Narratives (Upper-intes

diate Level)

English Course - Word Forms (Upper-intermediate Level)

FIG. 12. The result of adding courses to the database.

As a result of adding data to sites, all data is added
successfully without exception

V. CONCLUSIONS
The result entitled has shed light on the effectiveness
of the developed Web aggregator for collecting, filtering,
and categorizing information from varied online learning
environments. It emphasizes the successful execution of
distinct parser configurations that have been fine-tuned to
accommodate diverse web architectures, leading to
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proficient gathering and updating of data. The
aggregator's capability to neatly compile this information
within the knowledge base and via the user interface is
also showcased. The paper underscores the necessity for
constant updates and the possible incorporation with
machine learning technologies to boost customization and
precision, thereby demonstrating the system's flexibility
and growth potential within the dynamic realm of online
education. Test findings underline the aggregator's speed
and dependability, affirming its value in supporting non-
formal education platforms. In conclusion, the research
presents several strategies on how to synthesize and
manage data from websites with varying storage and
presentation methods.
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CTPYKTYpYy cucTemMu: arperauia gaHux, ¢GinbTpaLia KOpUCTyBauviB Ta B3AEMOAiA KOPUCTyBaya 3 CMCTEMOIO ANA HaZAHHA
iHAMBIAYaNbHMX PeKOMeHAaLiM Woao KypciB. Po3pobka BKAtovae Beb-cepBep Ha mosi Python, 6a3y aaHux MariaDB ans
36epiraHHA pe3ynbTaTiB MapcuUHry, napcep, AKUA OCHOBAHWUIA Ha BUKOPWCTaHHI 6ibnioTek ana nnatdopm HepopmanbHOT
OCBITU Ta MOAY/b Mirpauii 4ns KpocnnatdopmeHoro Be6-404aTKy ANA NPeACTaBAEHHA AaHUX KNiEHTaM. Y Wil CTATTi TaKOX
NiAKPecaMmo mMacluTaboBaHiCTb Ta NOTEHLiaNA NPOAYKTOBOIO PilleHHA AAA iHTerpauii 3 iHWKWMK OCBiTHIMM naatdopmamu.
MNiaKpecntoeTbca BaXKAUBICTb NOCTINHOTO OHOB/MIEHHS 6a3n AaHUX ANA MIATPUMAHHA i aKTyaNbHOCTI Y LWBUAKO3MIHHOMY
naHAawadTi OHNaKH-0CBITU. [A LbOro NPONOHYETLCA 3pOBUTU MOAYAI ANA aBTo aganTauil nig 3miHHI ymosu. Kpim Toro, B
AOKYMEHTI 06roBoptotoTLCA MabyTHI BAOCKOHANEHHS, BK/IOYAOUYM BNPOBAAMKEHHA MepesoBuX afropuTMiB MaLMHHOIO
HaBYaHHA A8 NiABULWEHHA TOYHOCTI NOLWYKY Ta MNepcoHanisauii, MigKpecntowym NOCTiiHY eBOAIOLjl0 cUCTeMU ANnA
33[10BONIEHHA AMHAMIYHWUX MOTPeb OHNaNH-y4HiB. TaKMM YMHOM, CTATTA NiACYMOBYE [AOCBiA, PO3POOKWU pilleHHA AnA
epeKTMBHOI B3aEMOZji 3 OCBITHIMW pecypcamu, CNpsAMOBaHOro Ha 3abe3neyeHHA AKICHOro nigdopy HaBYyasbHUX KypciB i
NiABULLEHHA 3PYYHOCTI KOPUCTYBAHHA OHNAMH-OCBITHIMM NiaTdopMmamm.

KNKOYOBI C/IOBA Beb-arperatop, naatGopmu OHNANH-OCBITU, KOHTEKCTHWUM MOWYK, ¢inbTpauia AaHWx, HedopmaabHa
ocBiTa.
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