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ABSTRACT The paper presents a web aggregator system for collecting, filtering, and classifying data from educational 
platforms, focusing on online courses. It describes the development and testing of a system that uses contextual search to 
help users find courses matching their interests and knowledge level, while also handling spelling errors. The system's 
effectiveness is established through tests demonstrating its capability for rapid data collection and update, providing 
accurate and relevant results. The paper details the system's three-tier structure: data aggregation, user filtering, and user-
system interaction for tailored course recommendations. The development involves a Python web server, a MariaDB 
database, a parser for non-formal education platforms, and a web application for client data presentation. In this paper also 
highlight the system's scalability and potential for integration with other educational platforms. Emphasize the importance 
of continuous updates to the database for maintaining relevance in a rapidly evolving online education landscape. 
Additionally, the paper discusses future enhancements, including the implementation of advanced machine learning 
algorithms for improved search accuracy and personalization, emphasizing the system's ongoing evolution to meet the 
dynamic needs of online learners. 

KEYWORDS web aggregator, online education platforms, course recommendation systems, contextual search, data 
collection and filtering. 

 
I. INTRODUCTION 

n the ever-evolving landscape of education, the 

proliferation of online learning platforms has 

generated an unprecedented volume of educational 

content. This requires advanced systems for efficient data 

aggregation and management. This study focuses on the 

development of a sophisticated web aggregator that uses 

cutting-edge technologies, such as a Python-based web 

server and a MariaDB database, to systematically collect, 

filter and present educational data. The research 

highlights the importance of non-formal education 

platforms and is at the forefront of educational 

technology. It offers a transformative tool that promises to 

improve user engagement and learning outcomes. It 

represents a step towards personalised and accessible 

learning experiences, given the system's ability to adapt to 

the dynamic nature of online education, and its potential 

for scalability and integration with machine learning 

algorithms. By providing actionable insights and fostering 

an enriched educational ecosystem, the anticipated 

outcomes of this research could make a significant 

contribution to the field. The development uses a Python 

web server, a MariaDB database that stores all 

information about users and courses, a parser for 

collecting data from non-formal education platforms that 

then updates the server with new aggregated data, and a 

web application for providing data to the client. It has 

been developed by analysing and synthesising sources [1-

12]. 

The analysis in this article was conducted using 

ChatGPT as a tool that allows to simplify routine work. 

The use of ChatGPT in the study highlights its usefulness 

in processing and analysing information from various 

online educational platforms [13]. This integration 

demonstrates the potential of artificial intelligence tools 

such as ChatGPT to improve research methodologies and 

provide in-depth insights into subject areas, especially in 

the emerging field of online education and web data 

aggregation. 

Algorithms for aggregating data from the Internet 

have not yet been studied, nor have possible approaches 

to this been analyzed. The analysis of algorithms in this 

work is based on various types of sites as well as their 

methods of storing and providing information in context 

of education platforms. In order for users to access 

courses from other learning platforms on platformoEDU, 

courses must be stored in the platform database. In order 

to receive courses from different platforms in 

platformoEDU, you need to use an information 

aggregator that will scan data from other platforms and 

update the relevant information. The general scheme of 

the aggregator is shown in Figures 1, 2). 

Among the requirements for the program are the 

following main requirements: 

1. Data collection validation – the program should 

check the validity of the data. 

2. Characterization – course data such as topic, 

difficulty level, duration, etc.  

3. Error handling – the program should be able to 

handle errors, which should be recorded in the error 

knowledge base to check the problem later. 

4. Speed and efficiency – the selected tools for 
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implementing the program should have the highest 

efficiency among analogues. 

5. Availability of data on the work process – the 

program should provide the ability to display the 

processes that occur in it during execution.  

 

FIG. 1. Scheme of the web analyzer work. 

 

FIG. 2. Scheme of the data aggregator. 

II. ALGORITHM OF THE WEB AGGREGATOR 
In the dynamic and ever-expanding realm of web data 

extraction, the development and implementation of 

effective web parsers are crucial. These tools are designed 

to systematically navigate, extract, and process data from 

various websites, each presenting unique structural and 

content challenges. This section delves into the intricacies 

of web parsers, outlining different strategies tailored to 

the specific architectures of websites. We explore several 

schemes: a general parser workflow, a parser operating 

from the main page, another working with the /sitemap of 

a website, and lastly, a parser that navigates through 

categories. 

Each of these approaches is meticulously crafted to 

address the distinct characteristics and layouts of 

websites, ensuring a comprehensive and efficient data 

extraction process. From simple, main-page-focused 

structures to more complex, category-based or /sitemap-

oriented designs, these parsing strategies demonstrate the 

adaptability and precision required in modern web data 

collection. Understanding these schemes provides 

invaluable insights into the mechanics of web scraping, a 

process integral to the vast domain of data-driven analysis 

and decision-making in today's digital world.Depending 

on the structure of the website, the approach to collecting 

data from the platform also changes - some sites store 

links in /sitemap, some provide a list of pages in xml, 

others in links to categories, etc.  

Data processing algorithms depend on the content of 

the page, the structure of the web page, the type and 

format of data, the volume and complexity of data, data 

availability, website limitations, and other factors, but we 

can distinguish the general scheme of a web parser. 

Fig. 3 illustrates the general workflow of a web parser. 

The process begins with obtaining the website's URL, 

followed by the acquisition of a list of processed pages. 

This is key to ensure that the parser does not revisit pages 

already present in the database. Should the list reveal 

unprocessed pages, the system proceeds to collect 

information from these pages. Upon completing the 

collection from all pages, the database is updated 

accordingly. The process concludes once the update is 

finished, signifying the end of the cycle. This workflow 

adapts to various website structures and data formats, 

ensuring flexibility in data collection and processing. 

 

FIG. 3. General scheme of the web parser workflow. 

A. Scheme of the web parser from the main page. This 

scheme is suitable for collecting data from a website 

where the links to the data to be collected are located on 

the main page and are not available at the /sitemap URL. 

The parser collects links to pages and then collects data 

from these pages. The parser scheme is shown in Fig. 3. 

The code of the program that implements the parser 

according to this scheme is shown in Fig. 4 

Fig. 4 presents a scheme for a web parser designed to 

operate from the main page of a website. This specific 

scheme is tailored for instances where the data links are 

located directly on the main page rather than through a 

/sitemap URL. The parser starts by getting the URL, then 

checks if all the pages have been collected. If not, it 

collects data from the current page. Once all pages are 

collected, the parser extracts the data, updating it 

accordingly. After the update, the process ends. This 

scheme is particularly efficient for websites with a simple 

structure where all necessary links are immediately 

accessible from the homepage. 
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FIG. 4. Parser scheme from the main page. 

B. Scheme of how a web parser works with /sitemap. 
This scheme is suitable for a site where the data to be 

collected is located on the links located in the /sitemap 

branch of the site. The parser scheme is shown in Fig. 5. 

 

FIG. 5. Scheme of the parser with /sitemap. 

Fig. 5 depicts a workflow for a web parser that 

navigates a site's /sitemap. This approach is optimized for 

websites that organize the data to be collected within the 

/sitemap directory. The process begins with retrieving the 

site's URL, followed by accessing the /sitemap. It then 

extracts existing data to determine what needs to be 

updated. The parser checks if all necessary data has been 

parsed. If not, it proceeds to collect the current course 

data. Once all data is collected and parsed, it updates the 

database, concluding the operation with the end of the 

data update. This methodical approach ensures a thorough 

and systematic collection of data. 

C. Scheme of web parser operation by category. This 

scheme is suitable for collecting data from a website 

where the data is linked to categofies. The parser scheme 

is shown in Fig. 6. 

Fig. 6 outlines a parser workflow designed for websites 

where data is  organized  by  category. The  process  begins 

 

FIG. 6. Parser scheme by category. 

with obtaining the main URL, then it retrieves the URLs 

for each category. The parser systematically visits each 

category, checking if there are more pages within the 

category to parse. If not, it collects data from the current 

category page. This cycle repeats until data from all 

categories has been collected. Once the collection is 

complete, the data is updated in the system, and the 

process ends. This scheme is particularly useful for 

structured websites with distinct categories of 

information. 

III. DATA OUTPUT 
In this crucial section, we delve into the data output 

phase of the web aggregator's operation, a fundamental 

aspect of web scraping and data collection processes. This 

phase not only represents the culmination of the data 

extraction effort but also provides critical insights into the 

efficiency and effectiveness of the web aggregator. We 

will explore various facets of this process, starting with 

the data collection process, where we analyze the output 

displayed during the aggregator's operation. This includes 

details such as the source of data, the volume of data 

already existing in the knowledge base, the amount of 

new data collected, and the time taken for each operation. 

Illustrative Figures, such as Fig. 7 and Fig. 8, will 

shed light on the initial and subsequent executions of the 

program, revealing how the aggregator adapts and 

responds to the changing data landscape across different 

platforms. We will discuss the implications of these 

results, including the efficiency of data collection and the 

update mechanisms in place. 

Following this, we will delve into the structuring and 

management of the knowledge base. This includes the 

transformation of raw data into a structured and easily 

navigable format, as exemplified in Fig. 9, which 

showcases the data organized in an Excel spreadsheet. 

This step is crucial for ensuring that the data is not only 

collected but also presented in a manner that is accessible 

and useful for further analysis or application. 

Finally, we will examine how the aggregated data is 

integrated into the platform, with a focus on the user 
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interface and data accessibility, as demonstrated in Fig. 10. 

This section will highlight the practical applications of the 

aggregated data and the ease with which users can interact 

with and benefit from the collected information. 

Overall, this section aims to provide a comprehensive 

understanding of the data output stage in web 

aggregation, emphasizing the importance of efficient data 

handling, organization, and presentation in making the 

collected data valuable and actionable. 

A. Data collection process. When the aggregator is 

tunning, the console displays information that shows the 

result of the program. It displays the site from which the 

data is collected, the amount of data from this platform 

that is already in the knowledge base, the amount ofdata 

that was collected, and the time it took the program to 

complete the work. The result of the first lun of the 

program with a limited amount of data is shown in Fig. 7. 

 

FIG. 7. The result of running the program for the first time. 

Upon the initial execution of the web aggregator 

program, it was observed that the database started empty 

for each platform. The program successfully collected 

data from Coursera, Sololearn, Alison, and edX, adding 

the new course information to the knowledge base. The 

duration of the program's operation varied, reflecting the 

different data collection methods adapted for each 

platform's unique structure. A subsequent run of the 

program, with limitations on the volume of data still in 

place, would yield further insights into the aggregator's 

efficiency and the potential incremental additions to the 

database. The outcomes of this second run are presented 

in Fig. 8, which is not included here. 

 

FIG. 8. The result of the second execution of the program. 

Fig. 8 displays the console output after the second 

execution of the web aggregator program. It shows the 

parsing process of the same educational platforms as in 

the first run. However, this time, no new courses were 

found on Coursera and edX, indicating that the previous 

data from these platforms was up-to-date. In contrast, 

additional courses were found for Alison, doubling the 

total count in the database for this platform. The parsing 

times for each site are also noted, with Coursera taking 

the longest at 68 seconds and Sololearn the shortest at 10 

seconds, showcasing the system's capability to efficiently 

check for new data and update the database accordingly. 

B. Knowledge base. Comparing the execution time with 

the first lun, it is noted that some programs were faster but 

did not collect any data - this is because the data selection 

algorithm collected data according to the test mode 

constraints and then removed from the list of data those 

that are already in the knowledge base, which 

demonstrates that the programs select only data for 

processing that does not yet have infonnation, and that all 

data was collected successfully on the first attempt. The 

third program managed to collect the same amount of data 

as the first time, because the collection algorithm includes 

collecting all links from sitemap, removing existing links, 

and collecting data about new ones. 

С. Update data in the knowledge base. After collecting 

the data, we will output the data to an excel file for easy 

viewing. The data obtained are shown in Fig. 9. 

Fig. 9 exhibits a snapshot of the knowledge base 

output   to   an   Excel   file   after   data   collection.   The  

 

FIG. 9. The data obtained. 
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spreadsheet includes detailed columns such as title, 

description, author, link, image, duration, rate, student 

count, document language, price, difficulty level, 

platform, and tags. This format allows for an organized 

and accessible presentation of the collected data, 

showcasing the diversity of courses extracted from the 

educational platforms. The data spans various subjects 

and shows key information, facilitating easy sorting and 

analysis. 

The data obtained as a result of the relationship is then 

entered into the platform by the operator. For 

convenience, let's add the name of the platform to the 

course name to see data from all platforms. The result of 

adding courses to the platform is shown in Fig. 10. 

Fig. 10 displays the database interface where course 

data, collected from various online educational platforms, 

has been entered. Each course entry includes the 

platform's name prefixed to the course title, enabling a 

clear and organized view of the aggregated data across 

multiple sources. This naming convention ensures that 

users can easily identify the origin of each course and 

facilitates efficient navigation through the database. 

 

FIG. 10. Database. 

IV. TESTING 

To compare the colTectness of the program, 3 tests 

were perfonned – from a small amount of data (the 

limitation depends on the data processing method), to 

analysis over the entire intelval. The table comparing the 

program results is shown in Table 1. A comparison ofthe 

program speed per data unit per second is shown in 

Fig. 11. 

Table 1 provides a detailed comparison of the results 

from three different tests conducted to evaluate the 

performance of the developed aggregator across various 

platforms including Coursera, Alison, Sololearn, and edX. 

For each attempt, the table lists the time taken in seconds, 

the amount of data collected (measured in units), the time 

efficiency calculated as time per unit, and the number of 

errors encountered. Over the three tests, we see a 

variation in the time efficiency and accuracy, with the 

first attempt being the most error-free across all 

platforms. As the volume of data increases in subsequent 

attempts, there's a noticeable increase in both time taken 

and errors, suggesting a correlation between the dataset 

size and the likelihood of errors. This table serves as a 

benchmark for assessing the aggregator's efficiency and 

reliability. 

The bar graph in Fig. 11 compares the operational 

speed of the web aggregator across four different 

educational platforms: Coursera, edX, Sololearn, and 

Alison. Each platform is represented by a different color, 

and   the   height   of   each  bar  corresponds  to  the  time 

TABLE 1. Comparsion of the results of the developed aggegator. 

Attempt Characteristics 

Platform 

Coursera Alison Sololearn Edx 

1 Time (s) 17 35 8 204 

Amount of 

data (units) 

60 10 5 32 

Time per 

unit (s) 

0.28 3.5 1.6 6.37 

Errors 

(units) 

0 0 0 0 

2 Time (s) 422 115 14 506 

Amount of 

data (units) 

1764 30 15 64 

Time per 

unit (s) 

0.24 3.83 0.9 7.9 

Errors 

(units) 

2 0 0 0 

3 Time (s) 4655 13647 12 3056 

Amount of 

data (units) 

8766 3791 27 456 

Time per 

unit (s) 

0.53 3.59 0.44 6.7 

Errors 

(units) 

15 10 0 1 

efficiency in processing the data. From the graph, we can 

observe that Coursera and Sololearn exhibit a higher 

speed of operation compared to Alison and edX, 

indicating a more efficient data processing capability in 

the former two. The comparison highlights the variance in 

processing times and could be used to identify 

performance benchmarks for each platform. 

 

FIG. 11. Compalison of speed of operation. 

Let's test adding 1000 courses to the database. The 

result is shown in Fig. 12. 

 

FIG. 12. The result of adding courses to the database. 

As a result of adding data to sites, all data is added 

successfully without exception 

V. CONCLUSIONS 

The result entitled has shed light on the effectiveness 

of the developed Web aggregator for collecting, filtering, 

and categorizing information from varied online learning 

environments. It emphasizes the successful execution of 

distinct parser configurations that have been fine-tuned to 

accommodate diverse web architectures, leading to 
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proficient gathering and updating of data. The 

aggregator's capability to neatly compile this information 

within the knowledge base and via the user interface is 

also showcased. The paper underscores the necessity for 

constant updates and the possible incorporation with 

machine learning technologies to boost customization and 

precision, thereby demonstrating the system's flexibility 

and growth potential within the dynamic realm of online 

education. Test findings underline the aggregator's speed 

and dependability, affirming its value in supporting non-

formal education platforms. In conclusion, the research 

presents several strategies on how to synthesize and 

manage data from websites with varying storage and 

presentation methods. 
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АНОТАЦІЯ У статті представлено структуру веб-агрегатора для збору, фільтрації та класифікації даних з освітніх 
платформ, зосереджених на онлайн-курсах. Показано архітектуру та результати тестування розробки, яка агрегує 
данні для системи, яка використовує контекстний пошук, щоб допомогти користувачам знайти курси, які 
відповідають їхнім інтересам та рівню знань, а також обробляє орфографічні помилки. Описано основні архітектурні 
елементи розробленого модулю. Ефективність системи підтверджується тестами, які демонструють її здатність до 
швидкого збору та оновлення даних, надання точних і релевантних результатів. У статті детально описано трирівневу 
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структуру системи: агрегація даних, фільтрація користувачів та взаємодія користувача з системою для надання 
індивідуальних рекомендацій щодо курсів. Розробка включає веб-сервер на мові Python, базу даних MariaDB для 
зберігання результатів парсингу, парсер, який оснований на використанні бібліотек для платформ неформальної 
освіти та модуль міграції для кросплатформеного веб-додатку для представлення даних клієнтам. У цій статті також 
підкреслимо масштабованість та потенціал продуктового рішення для інтеграції з іншими освітніми платформами. 
Підкреслюється важливість постійного оновлення бази даних для підтримання її актуальності у швидкозмінному 
ландшафті онлайн-освіти. Для цього пропонується зробити модулі для авто адаптаціЇ під змінні умови. Крім того, в 
документі обговорюються майбутні вдосконалення, включаючи впровадження передових алгоритмів машинного 
навчання для підвищення точності пошуку та персоналізації, підкреслюючи постійну еволюцію системи для 
задоволення динамічних потреб онлайн-учнів. Таким чином, стаття підсумовує досвід розробки рішення для 
ефективної взаємодії з освітніми ресурсами, спрямованого на забезпечення якісного підбору навчальних курсів і 
підвищення зручності користування онлайн-освітніми платформами. 
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освіта.  
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