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ABSTRACT In the dynamic landscape of information security and telecommunications, this paper delves into the
multifaceted realm of machine-learning-based methods, with a particular focus on their application in chaotic systems. An
informative introduction sets the way for a thorough examination of the major benefits provided by reservoir computing
(RC) and machine learning (ML) in telecommunications. The first segment of this study scrutinizes the role of machine
learning in fortifying information security. With the ever-evolving nature of cyber threats, understanding the nuances of ML
becomes imperative. The article highlights key advancements and features in ML that contribute to bolstering data security,
providing a nuanced perspective on its efficacy in addressing the intricate challenges posed by contemporary paradigms for
information security. Moving forward, the discussion expands to reservoir computing and its implications in
telecommunications. Reservoir computing, with its unique approach to processing information through dynamic systems,
has emerged as a promising technique. The article dissects its applications in the telecommunications sector, shedding light
on how reservoir computing augments information processing and transmission efficiency within complex networks. A
pivotal aspect of this paper is the exploration of the double-reservoir solution — a cutting-edge approach that combines
the strengths of reservoir computing for enhanced performance. This innovative solution is dissected in detail, uncovering
its prospects and the challenges it presents. The incorporation of double-reservoir solutions into chaotic systems represents
a paradigm shift in the optimization of system dynamics and represents a major advancement in tackling important
telecommunications difficulties. Yet not just this paper offers insights into this solution, it fairly describes possible
challenges with implementation of such a model. It is to be taken into consideration, hence there is no ‘perfect’ solution for
such a complex problem. This paper provides a comprehensive view of machine-learning-based solutions for information
security and telecommunications challenges. By unraveling the capabilities of both machine learning and reservoir
computing, it unlocks avenues for further research and development in harnessing these technologies to fortify the
foundations of secure and efficient telecommunications in the face of constantly developing threats. The insights presented
herein lay the groundwork for future innovations, urging researchers and practitioners to delve deeper into the synergy of

machine learning and chaotic systems for transformative advancements in these critical domains.
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I. INTRODUCTION

n the rapidly evolving landscape of information
I security and telecommunications, the integration of
cutting-edge technologies has become imperative
to address the dynamic challenges presented by
sophisticated cyber threats and the intricacies of chaotic
systems. Keeping up with changing cyber threats in the
dynamic world of telecommunications and information
security requires integrating state-of-the-art solutions. The
potential uses of reservoir computing and machine
learning to strengthen information security and improve

telecommunications systems are discussed in this article.

We utilize recent papers [1-3] that demonstrate the
revolutionary power of reservoir computing and machine
learning in tackling the problems presented by complex
cyber threats and chaotic system intricacy in order to
demonstrate the applicability of our investigation.

Our main goal is to analyze how reservoir computing
and machine learning contribute to enhancing information
security and transforming telecom infrastructure. We
explore the importance of machine learning in the first
chapter, concentrating on network monitoring, anomaly

detection, and intrusion detection three crucial
components of protecting sensitive data.

The emphasis moves to reservoir computing in the
second chapter, which explains its elements, training
strategies, and potential uses in chaotic systems. This lays
the groundwork for comprehending how frameworks for
telecommunications can be reshaped by reservoir
computing. We dissect the components of reservoir
computing systems, unravel the intricacies of their
training methodologies, and explore the promising
applications within chaotic systems. This section lays the
foundation for understanding how reservoir computing
can revolutionize telecommunications frameworks.

The second chapter shifts the focus to reservoir
computing, elucidating its components, training
methodologies, and promising applications within chaotic
systems. This sets the foundation for understanding how
reservoir computing can reshape telecommunications
frameworks with this novel paradigm and present a
comprehensive model description.

The narrative unfolds in the third chapter, introducing
an innovative approach — the double-reservoir solution.

p-ISSN 2786-8443, e-ISSN 2786-8451, 02009(7) | Yuriy Fedkovych Chernivtsi National University | www.chnu.edu.ua



SISIOT Journal | journals.chnu.edu.ua/sisiot

While confronting the challenges associated with this
novel paradigm, we present a comprehensive model
description, aiming to illuminate the prospects and
hurdles of this dual-reservoir approach. Through this
exploration, we aim to illuminate the prospects and
hurdles associated with a dual-reservoir approach,
offering insights into its potential as a robust solution in
the intricate domains of information security and
telecommunications. Join us on this journey through the
intricate landscape of chaotic systems, where innovation
meets the challenge, and the future of cybersecurity and
telecommunications unfolds.

Il. MACHINE LEARNING IN INFORMATION SECURITY
A. Anomaly Recognition. Chaotic systems can showcase
intricate and uncertain behaviors. Machine learning
strategies, like neural networks and clustering
methodologies, may be employed to identify anomalies or
unexpected variations within info-communication systems
[1,6]. This could assist in pinpointing potential harmful
activities or unusual network activities that suggest
cyberattacks. Machine Learning-based methods and
models for anomaly detection include:

1. Recurrent Neural Networks

Chaotic systems tend to generate time series data.
Machine learning models, such as recurrent neural
networks (RNNs) and long short-term memory networks
(LSTMs), can be ‘trained’ to predict future values of a
chaotic signal based on past observations [4]. This can be
used in forecasting and understanding the system's
dynamics as well as signal recovery or anomaly
recognition. A typical example of an RNN is Elman
Network. It is a simple recurrent network (Figure 1).
Elman Network is described by:

h=0,(Wx,+U,h_ +b,)

(1)
vo=0,(Wh+b))
where:
X, is input vector,

h, is hidden layer vector,
¥, is output vector,

W and U — parameter matrices,
b — parameter vector,
o, and o, - activation functions.

2. Autoencoders

Autoencoder is a type of a neural network architecture
specifically created to learn efficient representations of
input data [3]. Anomaly recognition can be performed by
training an autoencoder on normal data and identifying
data points with high reconstruction errors as anomalies.
Basic schema of an autoencoder can be sin in Fig. 2.

An autoencoder consists of two pivotal elements: an
encoder and a decoder. An encoder takes input
information, such as time-series data from a chaotic
system, and encodes it into a lower-dimensional
representation, typically called the °‘latent space’ or
‘encoding’. The decoder then takes this encoded
information and attempts to reconstruct the original data,
based on its previous learning. During its training an
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autoencoder learns to represent data in the most close-
packed and didactic way possible in the latent space. The
encoder learns to capture the most important patterns,
features, or structures in chaotic datasets it learns upon.
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FIG. 1. Elman’s RNN: (a) x is input vector; (b) y and z is output
vector; (¢) u is hidden layer vector.
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FIG. 2 An autoencoder scheme: (a) X is input vector; (b) % is
hidden layer vector; (c) X is output vector.

3. Recurrent Autoencoders

Recurrent Autoencoders (RAEs), which combine the
principles of autoencoders with recurrent neural networks
(RNNSs), develop a compressed representation of the data
while capturing sequential patterns in it. RAEs are thus
particularly well suited for sequential data applications,
such as information security and anomaly detection. They
combine recurrent connections with the autoencoder's
encoder-decoder architecture.

Both the temporal dependencies and compressed
representations of sequential data are intended to be
captured by them. In RAEs, the recurrent connections
record temporal dependencies while the encoder encodes
sequential data into a lower-dimensional form. A decoder
then uses this representation to reassemble the sequential
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data. RAEs are valuable for anomaly detection in time-
series data, particularly information security applications,
because they are good at catching complicated patterns in
sequential data.

RAEs are well-suited to recognize trends in software
program behavior and spot anomalies that might be signs
of malware or harmful activity. They also assist in
locating unexpected patterns of system events or log
entries that may be a sign of security breaches or system
weaknesses.

4. Invasion detection and accuracy improvement tools

Apart from RNNs, AEs, and RAEs usage in anomaly
detection and invasion detection (as invasion is a
subdivision of an anomaly in a chaotic telecommunication
system) some assisting methods and strategies need to be
considered. Namely:

- Isolation forests: tree-based group of ensemble
methods which key function is to detect anomalies within
telecommunication systems.

- Clustering algorithms: Algorithms such as K-Means
or DBSCAN, utilized for clustering, can be applied for
organizing data points of resemblance within disorderly
chaotic systems. Anomalies are perceived as data points
that are either not included in any cluster or belong to a
diminutive cluster.

- Principal Component Analysis: PCAs are effectively
used to bring down the dimensionality of chaotic system
data. Anomalies can be detected by identifying data
points that diverge significantly from the principal
components.

B. Invasion detection. Invasion detection is a specific case
of Anomaly detection. Machine learning frameworks can
be programmed to detect familiar attack sequences and
point out potential intrusions or cyber risks. These models
can adjust and learn with the passage of time, making
them better at recognizing unique attack techniques and
unknown vulnerabilities.

C. Network Monitoring. Machine learning can be
employed to scrutinize network traffic trends and pinpoint
abnormal data streams or dubious activities. Prospects of
ML use in network monitoring include among the rest:

1. Predictive Maintenance

Machine learning can assess sensor data from
machinery and equipment in industrial settings to forecast
when maintenance or settings change is necessary,
minimizing downtime and increasing operational
effectiveness. Prospects include improving predictive
maintenance models and expanding their use to different
industries.

2. Network Traffic Optimization

Based on current demand and traffic trends, machine
learning can improve resource allocation, load balancing,
and network traffic routing. ML’s capabilities in this area
provide raising quality of service (QoS), decreasing
latency, and strengthening network efficiency.

3. Security Threat Detection

In order to detect potential security threats and
cyberattacks, ML models can evaluate network records,
user behavior, and system activities. Prospects include
creating sophisticated threat detection systems that are
flexible enough to accommodate changing attack routes.
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11l. RESERVOIR COMPUTING IN TELECOMMUNICATIONS
Reservoir Computing is a machine-learning-based
method created for sequential data processing, notably in
the context of recurrent neural networks. It is renowned
for its versatility in time-series data, speech recognition,
and sophisticated signal processing applications. It is also
regarded for its simplicity and efficiency. The idea of
reservoirs or dynamic systems served as the inspiration
for reservoir computing [5,7].
A. Components of Reservoir Computing system. A
reservoir for mapping inputs into a high-dimensional
space and a readout for pattern analysis from the high-
dimensional states in the reservoir make up a reservoir
computing system [5]. Let us check out each component
in detail.
B. Reservoir. The centerpiece of a reservoir computing
system is the reservoir. It is often implemented as a
dynamical system with randomly initialized connections
or a RNN [5,7]. There are two primary aspects of a
reservoir:

1. Dynamics.

As a result of input data, the reservoir's internal state
changes over time. It can recognize temporal
dependencies because of its recurrent connections, which
preserve a short-term memory of previous inputs.

2. Fixed Structure.

Unlike conventional RNNs, the internal connections
of the reservoir are randomly initialized and maintained
throughout training. This quality makes training easier
and lowers the chance of overfitting.

C.Input Data. Sequential or time-series data that is
supplied into the reservoir computing system for
processing is referred to as input data [5]. Time-stamped
measurements, sensor readings, speech signals, and other
sequential information can all be included in this data.

D. Readout Layer. The readout layer is a neural network
layer that receives the internal state of the reservoir and
produces the wanted output. It is trainable and its
capabilities and efficiency will depend on precision and
quality of the trainings given to it. It maps the high-
dimensional internal state of the reservoir to the output
space, making it compatible with the task at hand. A
readout layer can consist of various types of neural
networks, namely feedforward neural networks (Fig. 3),
recurrent neural networks, or simple linear regression
models [4]. As opposed to the reservoir, the readout

s
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FIG. 3. A feedforward network scheme.
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layer's parameters are trained during a supervised learning
phase, where the system learns to produce the desired
outputs for given inputs. The output of the Reservoir
Computing system is typically a linear combination of the
reservoir's internal state. In the simplest case, this can be
described as:

d()ut (t) = VVoutr(t) > (2)
where 4 (1) is an output data set, J, ~is the weight
matrix of the readout layer, and r(t) represents the

internal state of the given reservoir at time .

E. Training Algorithm. Optimizing the readout layer's
settings is the responsibility of the training algorithm.
Techniques based on gradient descent, such as
backpropagation through time (BPTT) or ridge
regression, are frequently used in optimization. A training
procedure uses a loss function suitable to the job at hand
(e.g., mean squared error for regression or cross-entropy
for classification) to reduce the discrepancy between the
predicted outputs and the actual target outputs.

F. Output. Output information depends on the input data
and its precision, a task that was defined, performance of
a readout layer and its accuracy that depends on quality of
the training provided and its suitability for the given task.
Typical instances of output are predictions (like function
prediction, chaotic system behavior prediction, etc.),
classifications, or signal transformations (if our task is to
encrypt or/and restore a signal).

G. Hyperparameters. The size of the reservoir, the weight
matrix's spectral radius, the kind of activation functions
being utilized, and the training parameters for the readout
layer are all examples of the hyperparameters that define
the design of the reservoir computing system. The
system's performance can be greatly impacted by even the
tiniest change in such hyperparameters.

H. Reservoir Computing Training. Principles. In reservoir
computing, the reservoir's internal connections have fixed
dynamics that were given a random initialization.
Throughout training, they don't change. This set up makes
training easier and helps avoid overfitting. Typical
reservoir dynamics that represents the internal state of a
RNN can be described as:

r(t+1)= 1, [Wmdm (1)+ er(t)-i-bm] )

where:
r(t) is the internal state of the reservoir,

d, (t) is the input,

W, is the input-to-reservoir weight matrix,

in

W, is the recurrent weight matrix of the given

reservoir,
b, is the bias vector of the reservoir,

f is the activation function.

Training in reservoir computing is largely an issue of
supervised learning. The objective is to reduce the
discrepancy between the intended outputs and forecast
outputs for a given input sequence by optimizing the
readout layer's settings.
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I. Training Methods.

1. Linear Regression

The mapping from the internal state of the reservoir to
the output is often learned using linear regression, which
is a fairly trivial learning method. The mean squared error
between the expected and the target outputs is minimized
by this technique (Fig. 4).

2. Ridge Regression

Another regularized linear regression technique
widely exploited in Reservoir Computing is Ridge
Regression. It adds a regularization term to the mean
squared error loss function to avert overfitting and refine
generalization.

3. Echo State Networks

ESNs are a well-favored option of Reservoir
Computing. They use linear regression but with
specialized techniques such as the pseudoinverse method
for optimizing the readout layer. ESNs frequently employ
leaky integration to stabilize training.

4. Nonlinear Approaches

Sometimes, nonlinear models e.g. feedforward neural
networks or support vector machines are used as the
readout layer, which allows the system to capture
complex relationships between the reservoir state and the
target outputs.
J. Training Models.

1. Supervised Training

In supervised training, where both input sequences
and their associated goal outputs are provided during
training, the Reservoir Computing system learns from
labeled data.

2. Online Training

The readout layer is incrementally updated during
online training as fresh data is received. This method
works well for applications where data is received
sequentially and the model needs to be flexible.

3. Batch Training

During batch training, the readout layer's parameters
are updated using the whole training dataset. When all
data is accessible at once and the model can be trained in
a single pass, it is frequently utilized.

4. Sequential Training

Throughout sequential training the readout layer is
trained separately for each time step. It is especially
useful for applications where the mapping from the
reservoir state to the output changes over time.

FIG.4. An example of a linear regression within a two-
dimensional plot (the line) attempting to minimize the residual
sum of squares between the observed responses in the dataset as
responses predicted by the linear approximation.
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K. Applications of Reservoir Computing in Chaotic
Systems: Prospects. Reservoir Computing is being
successfully applied to a wide range of tasks, including:

1. Time-series prediction: Forecasting future values in
time-series datasets.

2. Speech recognition: converting spoken language
into text and viseversa, voice change, communication
language change like in most recent Al developed by
HeyGen Labs.

3. Robotics: sensor data handling, control over Al
behavioral patterns, etc.

4. Signal processing: filtering, denoising, encrypting,
and decrypting signals, extracting signals’ features.

5. Natural language processing: visual- and sound-
based.

However, in terms of the topic of this particular paper
TSP and Signal processing ought to be specifically
highlighted. It is imperative that tools and approaches in
cybersecurity are in the eternal race on both sides:
attackers and defenders [7]. A perspective idea that
should be looked into in the future is to use a double-
reservoir model that should be assisted by external
devices.

IV. A DOUBLE-RESERVOIR SOLUTION: PROSPECTS AND
CHALLENGES

The idea of a double reservoir system is simple. It
combines two existing models and proposes use of two
different reservoirs as two lines of defense [8-10]. While
first reservoir uses a machine learning model to encrypt
and decrypt the signal we want to transmit, the second
one should adjust to signal transmission media and apply
a pseudo-noise to an already encrypted signal, thus
damaging the signal in a seemingly random way, while
being specifically trained to restore such already
encrypted signals after they are being damaged in a
learned pseudo-random pattern. It is imperative that the
signal should be pseudo-damaged not before, but after
encryption as it adds an additional layer of protection.
A. The key challenges of the described approach.

1. Complexity

Implementing and training two separate reservoirs for
signal protection and manipulation can significantly
increase the complexity of the system. This complexity
may impact the system's performance and efficiency.

2. Security

The security of the signal protection layer is of course
a critical issue [8,9]. If an adversary gains access to the
protected signal and understands the
encryption/decryption process, they may themselves
restore the damaged signal using their own model. This
can be partially countered by damaging an already
encrypted signal. Not only this will make it harder to
recover such signal, but it will secure at least the second
reservoir data in case if encryption process is
compromised. If the signal is damaged before encryption
and the encryption is hacked it will give away the fact that
the pseudo-damaging is used.

3. Quality

An extra layer of signal manipulation can introduce
noise or artifacts into the signal. It's important to ensure
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that the signal restoration process is effective in
mitigating the effects of manipulation so that the signal
remains usable after its full decryption and pseudo-
restoration.

4. Resourcefulness

Training and optimizing two separate reservoirs can
be challenging. The reservoirs may interact in complex
ways, and coordinating their behavior may require
extensive tuning and testing. Depending on the
complexity and size of the reservoirs, as well as the
training data, implementing a double-reservoir system
may require significant computational resources.
B. Model description. The aim of this entire model is of
course to transmit a desired signal safely through our
chose communication medium. In a perfect system we
would alter our S(t) by applying encryption and pseudo-
damaging it, run it through our communication medium,
decrypt and restore it to receive S(t) on the end. However,
in reality we shall provide a simplified description of our
system described in equations 4,5, and 6.

{ )= 1 [ W, (1) +W,,S(1)]
D(t)= ()+N t)= fz[ W,oR, (1) +W,,E(1)]

where:
E(t) and D(t) are encrypted S(¢) and encrypted pseudo-
damaged S(t) respectively;

R, (z) and R, (t) — internal states of reservoirs 1

. (4)

(encryption layer) and 2 (pseudo-damaging layer)
respectively;

f, and £, are activation functions for reservoirs 1 and
2 respectively;

N(t) — noise (or pseudo-noise) function.

Apart from the pseudo-noise applied by the second
chaotic reservoir we have to acknowledge possible

transmission media effects:
X(t)=D(t)+M (1) )

where X(?) is the signal that the receiver shall read and
M() is medium function that might have its own natural
noise.

Then we should restore and decrypt the received
signal to recover the transmitted information:

D'(1)= X (£)—M"(¢)
E'(f)=D'(t)—N(t)=fz[D
S’(t)zfl[E'(t)_W’“sz (t)]

VVirzl
where:
M'(t)~ M (t) — estimated removed natural noise,
( )~D(t) — damaged encrypted signal on

recelvmg end,
( ) ( ) — encrypted signal after restoration,

S’(t) ~ S( ) fully restored and decrypted signal.
Such parameters as reservoir size, reservoir dynamics,

reservoir initialization, input encoding, volume and
quality of the training data, validity and quality of the
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training algorithm, and reservoir memory all affect the
difference between S(¢) and S'(?).

The general process of information transmission by a
telecommunications system with the calculation of a
double reservoir in the process of encryption and
decryption is described by equations (4-6). The transfer
process combined two existing models and uses two
different reservoirs as two lines of defense. The first tank
uses a machine learning model to encrypt and decrypt the
signal we want to transmit. The second tank must adjust
to the signal transmission environment and apply pseudo
noise to the already encrypted signal, thus corrupting the
signal. Using machine learning, seemingly random signal
damage is predicted and the system learns to restore
damaged signals. Being specially trained to restore such
already encrypted signals, the system will increase the
reliability of the transmission of encrypted signals.

V. CONCLUSION

We analyzed how redundant computing and machine
learning contribute to the improvement of information
security and the transformation of the telecommunications
infrastructure. It is worth noting that reservoir computing
and other machine learning-based tactics for data
protection in chaotic telecommunications systems should
become increasingly popular as computing power and
software development continue to grow along with the
introduction of new generations of AI. While the concept
of a double-tank computing system for signal protection
and manipulation is currently interesting, it poses
challenges in terms of complexity, security, and signal
quality. To mitigate these issues, the machine learning-
based models in use today need to improve accuracy and
quality. But this does not negate the prospects of using
machine learning to solve the problem of information
security and improve telecommunication systems.
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NepcnekTen meTtoais, Wo 6a3y0TbCA HA MALLUHHOMY
HaB4YaHHI Y XaOTUYHUX cucTemax B ranysi iHpopmauilHoi
6e3neKu Ta TeIeKOMYHiKaLin

Mukona KywHip®, Bonoaumup TopoHuyk, puropiii KocosaH

Kadeapa pagioTexHiku Ta iHpopmauiinHoi 6e3nekun, YepHiBeLbKUiA HalioHanbHUI yHiBepcuTeT iMeHi KOpia deabkosuya, YepHisui, YkpaiHa
*ABTOp-KOpecnoHaeHT (EnekTpoHHa aapeca: myk.kushnir@chnu.edu.ua)

AHOTALLIA: Y puHamiyuHomy naHgwadTi iHbopmauiMHOI 6e3neknM Ta TeNeKOMYHIKaLii ua craTra 3ariMbaloeTbca B
6aratorpaHHy céhepy MeToaiB, 3aCHOBAHMX Ha MALUMHHOMY HaB4YaHHi, 3 0CO6/MBMM aKLEHTOM Ha iX 3aCTOCYBaHHi B
Xa0TUYHUX cucTemax. IHGOpPMaLLIMHWIA BCTYN BiAKPWBAE WAAX ANA PETENbHOTO BUBYEHHA OCHOBHMX NepeBar pesepByapHUX
obuncneHb (RC) i mawmHHOro HaByaHHA (ML) y TenekomyHikauiax. Mepwuii CermeHT LbOro AOCNIAMEHHA AeTasbHO
pO3rNAfa€e posib MALMHHOFO HABYaHHA Yy 3MiLHeHHi iHbopmaLiiHoi 6e3nekn. OcKinbkM nNpupoga Kibepsarpos MocTinHO
po3BMBaETbCA. Came Yepes Le po3yMiHHA HioaHciB ML cTae 0608’A3KOBUM. Y CTATTi BUCBITNIOIOTHCA KAOYOBI JOCATHEHHA Ta
dyHKUii ML, fKi cnpuaAloTb 3MiLHEHHIO 6e3neKkn AaHuX, HaJaluuM TOHKUW NOriAag Ha Moro eQpeKTUBHICTb Yy BUPILLEHHI
CKMagHUX npobsiem, NOB’A3aHMUX i3 Cy4acHUMM nNapagurmamu iHbopmauinHoi 6esnekn. Pyxatouncb Bnepes, obroBopeHHs
PO3LIMPIOETECA A0 Pe3epByapHUX 0bYMCAEeHb Ta iX HACAiAKIB ANA TeneKomyHikauii. ObuncneHHA pesepByapy 3 ioro
YHiKanbHUM Nigxoaom A0 06pobKM iHPopmaLii 33 JONOMOroto AMHAMIYHUX CUCTEM CTano 6aratoobiuatoyord TEXHIKOL.
CTatTa po36UMpa€e MOro 3aCToCyBaHHA B CEKTOPi TeNIeKOMYHiKaL,ii, NPO/aMBalOYM CBITNIO Ha Te, AK pe3epByapHi obuncneHHs
NiaBULLYIOTb epEKTUBHICTb 0O6pobKM Ta nepegadi iHGopmaLii B CKNagHUX mMepexkax. KnoyoBMM acneKkTom Lji€ei cTaTTi €
OOCNiOKEHHSA pilleHHA NoABIMHOro pesepsyapa — NepefoBOro NiaxoAy, AKMN NOEAHYE B COBi CUIbHI CTOPOHM 0BYUCIEHHA
nnacta Ana nigBUWEHHA NPOAYKTUBHOCTI. Lle iHHOBaUiiHe pilleHHA AeTanbHO PO36UPAETbCA, PO3KPMBAOYM IHOrO
NMepcneKkTUBM Ta BUK/IUKM, AKI BOHO CTBOPIOE. BK/IOUEHHA pilleHb i3 NoABIHUM pe3epByapoM Y XaOTWUYHI CUCTeMU ABNSE
coboto 3MiHy napagMrmu B ONTMMI3aLii CMCTEMHOI AMHAMIKM Ta 3HAYHWI NpPOrpec Yy BUPILIEHHI BaXKAUBUX
TENEKOMYHIKaLiMHUX TpyaHowiB. MpoTe uA cTaTTA He MPOCTO MPOMOHYE PO3YMIHHA LbOro PilleHHA, BOHA YEeCHO Onucye
MOXMBI Npobaemu 3 BNPOBagKeHHAM Takoi mogeni. Lie cnig B3ATM [0 yBarM, TOMy He iCHYE «ifeanbHOro» pileHHa ans
TaKoi CKNagHoi Npob6emn. PO3KpMBaOUM MOXKINBOCTI K MALUMHHOMO HaBYaHHA, TaK i pe3epBHUX 064YMCNEHD, BiH BiAKPUBAE
WAAXU NA NoAasblMX AOCNIAXKEHb i PO3POOOK Yy BMKOPUCTAHHI LMX TEXHONOTIM ANA 3MiLHEHHA OCHOB 6e3neyHux i
epeKTUBHUX TeNIeKOMYHIKaLin nepes 06anMyyam 3arpos, WO MOCTiMHO po3BMBatoThbCA. lNpeacTaBneHi TyT igei 3aknagatoTb
OCHOBY A/11 MaWbyTHiX iHHOBAL,M, CMOHyKaluYM AOCNIAHMKIB i NMPaKTUKIB ranblue AOCAiAXKyBaTM CUHEPTi0 MALUMHHOIO
HaBYaHHA Ta XaOTUYHMX CUCTEM ANA TPAHCHOPMALLIMHUX JOCATHEHDb Y LIUX KPUTUYHUX 0BNacTAX.

K/TIO4YOBI C/IOBA MallMHHe HaBYaHHS, pe3epByapHi 06YMCNEHHA, XaOTUYHA CUCTeMA, TeIEKOMYHIKaLLil.

@ @ This article is licensed under a Creative Commons Attribution 4.0 International License.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
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