Reading of Sensor Signals with Automatic Selection of Sampling Frequency

Serhiy Balovsyak*, Vitaly Lacusta and Khrystyna Odaiska

Computer Systems and Networks Department, Yuriy Fedkovych Chernivtsi National University, Chernivtsi, Ukraine

*Corresponding author (E-mail: s.balovsyak@chnu.edu.ua)

ABSTRACT The correct selection of sampling frequency when reading signals from sensors ensures high quality of digitized data and saves memory when storing such data. The complexity of automatic selection of the sampling frequency is explained by the fact that this frequency depends on the frequencies of the useful signal, which are not always known. Therefore, in the work the computer system for reading signals from temperature, humidity, and lighting sensors with automatic selection of the sampling frequency based on the Fourier spectrum analysis of the signals was developed. Signals from digital sensors (DHT22) are transmitted directly to the Raspberry Pi3 microcomputer. Signals from analog sensors (LM335M, light sensor) are fed to the Arduino Uno device. An algorithm for the analysis of Fourier spectra of one-dimensional signals has been developed, which is designed to determine the optimal sampling frequency and decimation coefficient of signals read from sensors. Based on the initial signals, their Fourier spectra are calculated, and by analyzing the spectra, the maximum frequency of the useful signal and the optimal sampling frequency are determined. Specified sampling frequency according to the sampling theorem is calculated as a double value of the maximum frequency of the useful signal. Decimation (thinning) of the signal is performed with a coefficient determined by the ratio of the initial and specified sampling frequencies. To assess the quality of the signal after decimation, the decimated values were interpolated by splines. The root mean square error of interpolation was calculated. Experimental testing of the developed tools for reading and analyzing signals from temperature, humidity and lighting sensors was carried out. In all considered cases, the sampling frequency is determined correctly. The resulting sampling rates can be used for decimation of signals or for subsequent reading of signals from sensors.

KEYWORDS temperature, humidity and light sensors, frequency sampling, Fourier spectrum, Python.

I. INTRODUCTION

The task of developing a computer system for reading the signals of temperature, humidity and lighting sensors with automatic selection of the sampling frequency is important, since the correct selection of the sampling frequency ensures high quality of digitized data and saves memory when storing it [1-4]. The complexity of automatic selection of the sampling frequency is explained by the dependence of this frequency on the frequencies of the useful signal, which are not always known. Setting the same frequency when reading different signals is technically a simple solution, but it has two significant disadvantages: undersampling leads to signal distortions, and oversampling leads to excessive memory consumption when storing data. In modern computer systems, the shape and spectra of signals are analyzed to select the optimal sampling frequency [1-2]. For this purpose, artificial neural networks (ANN), in particular, convolutional neural networks (CNN) [3] are also used. However, the analysis of the shape and spectra of signals is not yet fully automated, and the use of ANN requires a complex learning process. At the same time, choosing the sampling frequency in manual mode is a time-consuming process. Therefore, an urgent task is to create a computer system for reading sensor signals with automatic selection of the sampling frequency based on the analysis of the Fourier spectra of the signals.

II. ANALYSIS OF SPECTRA OF FOURIER SIGNALS

The one-dimensional direct Discrete Fourier Transform [4, 5] of the digital signal \(y(i) \), where \(i = 0, 1, ..., Q-1 \), is determined by the formula

\[
F(n) = \frac{Q}{Q} \sum_{i=0}^{Q-1} y(i) \exp(-j \cdot 2\pi \frac{n \cdot i}{Q-1}),
\]

where \(F \) is the Fourier image (Fourier coefficients); \(j \) is an imaginary unit \((j^2 = -1) \); \(n \) is the reference number for the signal frequency, where \(n = 0, 1, ..., Q-1 \).

Based on the Fourier spectrum \(F \), the initial function \(y(i) \), where \(i = 0, 1, ..., Q-1 \), can be obtained using a one-dimensional inverse discrete Fourier transform

\[
y(i) = \sum_{n=0}^{Q-1} F(n) \exp(j \cdot 2\pi \frac{n \cdot i}{Q-1}).
\]

Analysis of Fourier spectra allows to determine the value of the signal frequencies \(f \) and use them to calculate the sampling frequency \(f_s \). If the maximum frequency of the signal in the spectrum is \(f_{max} \), then according to the counting theorem, the sampling frequency should be chosen equal to \(f_s = 2f_{max} \). The Fourier amplitude spectrum is determined by the formula

\[
F_a = |F| = \sqrt{\text{Re}(F)^2 + \text{Im}(F)^2},
\]

where \(\text{Re}(F) \) is the real part of \(F \), \(\text{Im}(F) \) – imaginary part.
III. HARDWARE AND SOFTWARE IMPLEMENTATION OF A COMPUTER SYSTEM FOR READING AND ANALYSIS OF SENSOR SIGNALS

In the developed computer system (Fig. 1), signals from digital temperature and humidity sensors (DHT22) are transmitted directly to the Raspberry Pi3 microcomputer [6-8]. The signals from the LM335M analog temperature sensor and the photoresistor [9] are first fed to the Arduino Uno device [10], where they are converted into digital form using an ADC and then sent to the computer (or Raspberry Pi). On the basis of the signals, their spectra are calculated, and by analyzing the spectra, the optimal sampling frequency f_d is determined. The connection between the Raspberry Pi and the computer is made through a network connection, the connection of the Arduino Uno device with the computer is made through the USB port.

The software for the Arduino Uno device, which reads temperature and light signals, is written in the Processing language. The software in the Raspberry Pi3 that reads the temperature and humidity signals is written in Python.

The analysis of the signal spectra is performed by the "p_spectr_23" program developed in the Python language. Analysis of signal spectra is performed according to the following algorithm (Fig. 2). First, the initial signal $y(x)$ is read from the sensor (Fig. 3), the Q values of which are written into the arrays v_x and v_y. Voltage U, temperature T or humidity H are used as the y parameter of the signal. Time t is used as the x parameter of the signal. The Fourier spectrum F of the signal is calculated using the fltpack module of the scipy library with the function fft (Fast Fourier Transforms). Next, the Fourier spectrum is centered with the command $F_c=np.fft.fftshift(F)$, after which the zero frequency f_c corresponds to the center of the spectrum F_c. The module of the Fourier coefficients is calculated by the command $F_a=abs(F_c)$ (Fig. 4).

A number of parameters are calculated for the obtained Fourier spectrum. The sampling frequency of the initial signal f_d0 is calculated through the sampling time Δt according to the formula $f_d0 = 1/\Delta t$.

The maximum frequency of the spectrum f_{max} according to the Nyquist sampling theorem is calculated as half of the sampling frequency: $f_{max} = f_d/2$.

The maximum value of the modulus of the Fourier coefficients for noise F_a_{max} is calculated as the maximum value of the modulus of the spectrum F_a for 1/4 of the highest frequency part of the spectrum.

$$k_S = 10 \text{ for photoresistor; } \quad k_S = 5 \text{ for the DHT22 sensor (temperature signal); } \quad k_S = 2 \text{ for the LM335 thermal sensor.}$$
The maximum frequency of the useful signal f_{max} is calculated as the frequency value at which the modulus of the Fourier coefficients F_a exceeds the minimum value of the modulus of the Fourier coefficients $F_{a_{\text{min}}}$.

The specified sampling frequency f_d according to the sampling theorem is calculated as the doubled value of the maximum frequency of the useful signal f_{max}, i.e. $f_d = 2 \cdot f_{\text{max}}$. Decimation (thinning) of the signal is performed with a coefficient

$$Nd = \lfloor f_d / f_d \rfloor.$$ \hspace{1cm} (5)

For example, if $Nd = 4$, then 1 of 4 readings remains. After decimation, the quantity of points for the signal values Q_d is reduced by Nd times, i.e. $Q_d = \lfloor Q/Nd \rfloor$, and the signal values after decimation are written into arrays vxd and vxd. Taking into account the decimation, the specified sampling frequency $f_d N$ is calculated

$$f_d N = f_d / Nd.$$ \hspace{1cm} (6)

At this sampling frequency $f_d N$, the waveform is preserved, but the signal does not contain redundant data (Fig. 5). To assess the quality of the signal after decimation, the estimated values of y_d were interpolated by splines using the «InterpolatedUnivariateSpline» function. The interpolated values of y_i (Fig. 6) are close to the initial y and contain the same Q points, and the difference between them is described by the root mean square error (rmse).

IV. EXPERIMENTAL CHECK OF THE DEVELOPED SYSTEM

By Arduino UNO device the signal from the LM335 temperature sensor was read (Fig. 7). The signal spectrum was calculated (Fig. 8). A fairly high value of the decimation coefficient ($Nd=11$) was obtained, but the signal shape was preserved.

![Fig. 7. The initial signal (y) from the LM335 temperature sensor and the signal after decimation (y_d).](image)

![Fig. 8. The spectrum module F_a of the signal (Fig. 7).](image)

An algorithm for the analysis of Fourier spectra of one-dimensional signals has been developed, which is designed to determine the optimal sampling frequency and decimation coefficient of signals.

A computer system for read signals from the DHT22 sensor are similarly processed. The sampling rates of the temperature, humidity and lighting signals are calculated correctly.

V. CONCLUSION

An algorithm for the analysis of Fourier spectra of one-dimensional signals has been developed, which is designed to determine the optimal sampling frequency and decimation coefficient of signals.

A computer system for read signals from the DHT22 temperature and humidity sensor, the LM335M temperature sensor, and the light sensor (photoreistor) was developed. Signals from digital sensors (DHT22) are transmitted directly to the Raspberry Pi3. Signals from analog sensors (LM335M, light sensor) are fed first to the Arduino Uno and then sent to the computer.

An experimental test of the developed tools for reading and analyzing signals from temperature, humidity and lighting sensors was carried out. The obtained sampling frequency can be used for subsequent reading of signals from sensors. In all considered cases, the optimal sampling frequencies were determined correctly.

AUTHOR CONTRIBUTIONS

S.B. – conceptualization, methodology, writing-review and editing, supervision; V.L. – software, resources, writing-original draft preparation; Kh.O. – validation, investigation, visualization.
Зчитування сигналів сенсорів із автоматичним вибором частоти дискретизації

Сергій Баловсяк*, Віталій Лакуста та Христина Одайська
Кафедра комп'ютерних систем та мереж, Чернівецький національний університет імені Юрія Федьковича, Чернівці, Україна

*Автор-кореспондент (Електронна адреса: s.balovsyak@chnu.edu.ua)

АНОТАЦІЯ Правильний вибір частоти дискретизації при зчитуванні сигналів із сенсорів забезпечує високу якість оцифрованих даних та економію пам'яті при збереженні таких даних. Складність автоматичного вибору частоти дискретизації пояснюється тим, що така частота залежить від частот корисного сигналу, які не завжди відомі. Тому в роботі розроблено алгоритм аналізу спектрів Фур'є, який визначає максимальну частоту корисного сигналу та оптимальну частоту дискретизації. Проведено експериментальну перевірку розробленого алгоритму на цифрових сенсорах температури, вологості та освітлення.

КЛЮЧОВІ СЛОВА сенсори температури, вологость та освітлення, частота дискретизації, спектр Фур'є, Python.

REFERENCES

COMPETING INTERESTS
The competing interests are absence.