МІНІ-ЕКСПЕРИМЕНТ У СЕЛЕКЦІЇ: ГЕНОТИПУВАННЯ КОЛОНІЙ APIS MELLIFERA L. ЗА ДВОМА ОЗНАКАМИ
DOI:
https://doi.org/10.31861/biosystems2025.01.036Ключові слова:
бджола медоносна, трутні, робочі бджоли, геном, хромосомні набори, класична морфометрія крил, морфометричні шаблони, господарсько-корисні ознаки, дисперсійний аналіз, дискримінантний аналіз, A.m.carnicaАнотація
На протязі 2020–2023 років проведено сплановане дослідження однієї пасіки (Україна, Львівська область), що налічує 50 колоній бджіл медоносних підвиду A.m.carnica. Оскільки ізоляція пасіки від впливу сторонніх трутнів була недостатньою, робота у 2020–2021 роках концентрувалась на досягненні більш стабільного та однорідного трутневого фону. В результаті на початок 2023 року створено дві групи колоній аналогів, королеви яких є сестрами. Ідентифікація підвидової та популяційної належності хромосомних наборів вказаних королев, здійснювалась за допомогою морфометричних шаблонів для крил трутнів. За результатами порівняння фенотипів крил з шаблонами, встановлено імовірну належність власних геномів королев до місцевої популяції «Carnica», та лінії Peschetz. Для 17 колоній протягом сезону 2023 року здійснено тестування за двома господарсько-корисними ознаками: льотної активності та лагідності. За допомогою дисперсійного аналізу даних, встановлено залежності між імовірним складом геномів королев з одного боку, та двома факторами – метеоумовами та наявністю медодаїв), а також вказаними ознаками -лагідністю, льотною активністю, з іншого. Одержані результати не мають статистичної достовірності у повному обсязі, що обумовлено недостатньою кількістю експериментальних даних. Однак, виявлені тенденції дозволяють робити конкретні пропозиції щодо подальшого використання колоній, для яких встановлено склад та імовірна належність хромосомних наборів геномів королев. Такий підхід рекомендується як додатковий інструмент, з метою підвищення ефективності у селекційній роботі.
Посилання
1. Andonov, S., Costa, C., Uzunov, A., Bergomi, P., Lourenco, D., & Misztal, I. (2019). Modeling honey yield, defensive and swarming behaviors of Italian honey bees (Apis mellifera ligustica) using linear-threshold approaches. BMC genetics, 20(1): 1-9. https://doi.org/10.1186/s12863-019-0776-2
2. Albarrak, A. B., & Gray, A. (2023). Seasonal colony loss rates and honey bee management in the kingdom of Saudi Arabia: Results of a survey of beekeepers. Insects, 14(6): 1-20. https://doi.org/10.3390/insects14060513
3. Alphen, J.,M., & Fernhout, B. J. (2020). Natural selection, selective breeding, and the evolution of resistance of honeybees (Apis mellifera) against Varroa. Zoological letters, 6: 1-20 https://doi.org/10.1186/s40851-020-00158-4
4. Aurell, D., Bruckner, S., Wilson, M., Steinhauer, N., & Williams, G. R. (2023). A national survey of managed honey bee colony losses in the USA: Results from the Bee Informed Partnership for 2020–21 and 2021–22. Journal of apicultural research, 63(1):1–14. https://doi.org/10.1080/00218839.2023.2264601
5. Aurell, D., Wall, C., Bruckner, S., & Williams, G.R. (2024). Combined treatment with amitraz and thymol to manage Varroa destructor mites (Acari: Varroidae) in Apis mellifera honey bee colonies (Hymenoptera: Apidae). Journal of insect science, 24: 1-10 https://doi.org/10.1093/jisesa%2Fieae022
6. Babenko, V. V., Galatiuk, O. E., Yarovets, V. I. (2024). Utochneni morfometrychni etalony kryl trutniv deiakykh linii bdzhil pidvydu A.m.carnica. [Refined morphometric standards of drone wings of some lines of bees of the subspecies A.m.carnica]. Kyiv: Pasika, 5:15-16. (in Ukrainian)
7. Barahona, N. A., Vergara, P. M., Alaniz, A. J., Carvajal, M. A., Castro, S. A., Quiroz, M., Hidalgo-Corrotea, C. M., & Fierro, A. (2024). Understanding how environmental degradation, microclimate, and management shape honey production across different spatial scales. Environmental science and pollution research international, 31(8): 12257–12270. https://doi.org/10.1007/s11356-024-31913-1
8. Barroso, P., Reza-Varzandi, A., Sardo, A., Pesavento, A., Allais, L., Zanet, S., & Ferroglio, E. (2025). Impact of intensive agriculture and pathogens on honeybee (Apis mellifera) colony strength in northwestern Italy. Environmental pollution, 367: 125571 https://doi.org/10.1016/j.envpol.2024.125571
9. Basso, B., Kistler, T. & Phocas, F. (2024). Genetic parameters, trends, and inbreeding in a honeybee breeding program for royal jelly production and behavioral traits. Apidologie, 55:1-15. https://doi.org/10.1007/s13592-023-01055-3
10. Bernstein, R., Du, M., Du, Z., G., Strauss, A., S., Hoppe, A., & Bienefeld, K. (2023). First large-scale genomic prediction in the honey bee. Heredity, 130:320–328. https://doi.org/10.1038/s41437-023-00606-9
11. Bienefeld, K., Ehrhardt, K. & Reinhardt, F. (2007). Genetic evaluation in the honey bee considering queen and worker effects — A BLUP-Animal Model approach. Apidologie, 38:77–85. https://doi.org/10.1051/apido:2006050
12. Blacquiere, T., Boot, W., Calis, J., Moro, A., Neumann, P., & Panziera, D. (2019). Darwinian black box selection for resistance to settled invasive Varroa destructor parasites in honey bees. Biological invasions, 21: 2519–2528. https://doi.org/10.1007/s10530-019-02001-0
13. Brascamp, E. W., & Bijma, P. (2014). Methods to estimate breeding values in honey bees. Genetics, Selection, Evolution, 46(1): 1-15. https://doi.org/10.1186/s12711-014-0053-9
14. Brascamp, E.W., Bijma, P. (2019). A note on genetic parameters and accuracy of estimated breeding values in honey bees. Genetics, selection, evolution: GSE, 51: 1-6. https://doi.org/10.1186/s12711-019-0510-6
15. Bruns, C.E., Demastes, J.W., Berendzen, P.B., & Wen, A. (2024). The genetic structure of founding bumblebee populations in reconstructed prairie habitat 3 years after planting. Restoration ecology, 32: 1-11. http://dx.doi.org/10.1111/rec.14176
16. Büchler, R., Andonov, S., Bernstein, R., Bienefeld, K., Costa, C., Du, M., Gabel, M., Given, K., Hatjina, F., Harpur, B.A., Hoppe, A., Kezic, N., Kovačić, M., Kryger, P., Mondet, F., Spivak, M., Uzunov, A., Wegener, J., & Wilde, J. (2024). Standard methods for rearing and selection of Apis mellifera queens 2.0. Journal of Apicultural research, 1–57. https://doi.org/10.1080/00218839.2023.2295180
17. Du, M., Bernstein, R., Hoppe, A. & Bienefeld, K. (2021). Short-term effects of controlled mating and selection on the genetic variance of honeybee populations. Heredity 126:733–747. https://doi.org/10.1038/s41437-021-00411-2
18. Du, M., Bernstein, R., & Hoppe, A. (2023). The Potential of Instrumental Insemination for Sustainable Honeybee Breeding. Genes, 14(9): 1-19. https://doi.org/10.3390/genes14091799
19. Du, M., Bernstein, R., & Hoppe, A. (2024). The number of drones to inseminate a queen with has little potential for optimization of honeybee breeding programs. Hereditas, 161: 1-10. https://doi.org/10.1186/s41065-024-00332-0
20. Eynard, S. E., Mondet, F., Basso, B., Bouchez, O., Le Conte, Y., Dainat, B., ... & Servin, B. (2025). Sequence‐Based Multi Ancestry Association Study Reveals the Polygenic Architecture of Varroa destructor Resistance in the Honeybee Apis mellifera. Molecular Ecology, 34(3): 1-20.
21. Facchini, E., Bijma, P., Pagnacco, G., Rizzi, R., Brascamp, E.W. (2019). Hygienic behaviour in honeybees: A comparison of two recording methods and estimation of genetic parameters. Apidologie, 50:163–172. https://doi.org/10.1007/s13592-018-0627-6
22. Ferrufino, C., Scannapieco, A. C., Russo, R. M., Gonzalez, F. N., Salvador, R., & Dus Santos, M. J. (2024). Reduction of Acute Bee Paralysis Virus Infection and Mortality in Honeybees (Apis mellifera) by RNA Interference Technology. Preprints. https://doi.org/10.20944/preprints202412.0850.v1
23. Galatiuk, O. Y., Zastulka, M. V., Cherevatov, V. F., Yarovets, V. I., & Egoshin, L. R. (2024). Obtaining morphometric standards of drone wings of separate populations of honey bees (Apis mellifera) in Ukraine. Regulatory Mechanisms in biosystems, 15(1): 92–96. doi:10.15421/022413
24. Geslin, B., Gauzens, B., Baude, M., Dajoz, I., Fontaine, C., Henry, M., Ropars, L., Rollin, O., Thebault, E., & Vereecken, N. J. (2017). Massively introduced managed species and their consequences for plant–pollinator interactions. Advances in ecological research, 57:147–199. https://doi.org/10.1016/bs.aecr.2016.10.007
25. Guichard, M., Phocas, F., Neuditschko, M., Basso, B. & Dainat, B. (2023) An Overview of Selection Concepts Applied to Honey Bees. Bee World, 100(1): 2-8. https://doi.org/10.1080/0005772X.2022.2147702
26. Guichard, M., Neuditschko, M., Soland, G., Fried, P., Grandjean, M., Gerster, S., Dainat, B., Bijma, P., & Brascamp, E.W. (2020). Estimates of genetic parameters for production, behaviour, and health traits in two Swiss honey bee populations. Apidologie, 51(5): 876–891. DOI: 10.1007/s13592-020-00768-z
27. Herrera, C., Ferragut, J.F., Leza, M., Jurado-Rivera, J. (2024). Invasion genetics of the yellow-legged hornet Vespa velutina in the Westernmost Mediterranean archipelago. Journal of pest science, 97: 645–656. https://doi.org/10.1007/s10340-023-01680-y
28. Jack, C. J., & Ellis, J. D. (2021). Integrated Pest Management Control of Varroa destructor (Acari: Varroidae), the Most Damaging Pest of (Apis mellifera L. (Hymenoptera: Apidae)) Colonies. Journal of insect science (Online), 21(5): 1-32. https://doi.org/10.1093/jisesa/ieab058
29. Kazenel, M. R., Wright, K. W., Griswold, T., Whitney, K. D., & Rudgers, J. A. (2024). Heat and desiccation tolerances predict bee abundance under climate change. Nature 628:342–348. https://doi.org/10.1038/s41586-024-07241-2
30. Kistler, T., Basso, B. & Phocas, F. A. (2021). A simulation study of a honeybee breeding scheme accounting for polyandry, direct and maternal effects on colony performance. Genetics selection evolution, 53: 1-16 . https://doi.org/10.1186/s12711-021-00665-8
31. Kistler, T., Kouchner, C., Brascamp, E.W. Dumas, C., Mondet, F., Vignal, A., Basso, B., Bijma, P., & Phocas, F. (2024). Heritability and correlations for honey yield, handling ease, brood quantity, and traits related to resilience in a French honeybee population. Apidologie, 55: 1-13. https://doi.org/10.1007/s13592-024-01088-2
32. Knoll, A., Šotek, M., Prouza, J., Langová, L., Přidal, A., & Urban, T. (2025). Assessing Genetic Diversity and Population Structure of Western Honey Bees in the Czech Republic Using 22 Microsatellite Loci. Insects, 16(1): 1-17. https://doi.org/10.3390/insects16010055
33. Locke, B. (2016). Natural Varroa mite-surviving Apis mellifera honey bee populations. Apidologie, 47: 467–482. DOI: 10.1007/s13592-015-0412-8
34. Luis, A.R., Grindrod, I., Webb, G. Piñeiro, A. P., & Martin, S. J. (2022). Recapping and mite removal behaviour in Cuba: home to the world’s largest population of Varroa-resistant European honeybees. Scientific reports, 12: 1-8. https://doi.org/10.1038/s41598-022-19871-5
35. Lukic, B., Raguz, N., Kovačić, M., Curik, I., Obšteter, J., Prešern, J., Bubnič, J., Lužaić, R., Pihler, I., Mirjanić, G., Pietropaoli, M., & Puškadija, Z. (2024). Genomic diversity and population structure of Carniolan honey bee in its native habitat. BMC genomics, 25(1): 1-13. https://doi.org/10.1186/s12864-024-10750-z
36. Maucourt, S., Fortin, F., Robert, C., & Giovenazzo, P. (2021).Genetic Progress Achieved during 10 Years of Selective Breeding for Honeybee Traits of Interest to the Beekeeping Industry. Agriculture, 11: 1-14. https://doi.org/10.3390/ agriculture11060535
37. Mukogawa, B., & Nieh, J. C. (2024). The Varroa paradox: infestation levels and hygienic behavior in feral scutellata-hybrid and managed Apis mellifera ligustica honey bees. Scientific reports, 14: 1-12. https://doi.org/10.1038/s41598-023-51071-7
38. Noël, A., Le Conte, Y., & Mondet, F. (2020). Varroa destructor: how does it harm Apis mellifera honey bees and what can be done about it?. Emerging topics in life sciences, 4(1): 45–57. https://doi.org/10.1042/ETLS20190125
39. On beekeeping: Law of Ukraine. No. 184/82 of September 20, 2000. Official Gazette of Ukraine dated 10.11.2000, № 43, P. 245, Article 1872, Act Code 16996/2000. URL: https://zakon.rada.gov.ua/laws/show/z0736-00#Text
40. Panziera, D., van Langevelde, F., & Blacquière, T. (2017). Varroa sensitive hygiene contributes to naturally selected varroa resistance in honey bees. Journal of Apicultural Research, 56(5): 635-642. https://doi.org/10.1080/00218839.2017.1351860
41. Park, M. G., Kim, W. J., Choi, J. Y., Kim, Jong H, Park, D. H., Kim, Jun Y, Wang, M., & Je, Y. H. (2020). Development of a Bacillus thuringiensis based dsRNA production platform to control sacbrood virus in Apis cerana. Pest management science, 76(5): 1699-1704. https://doi.org/10.1002/ps.5692
42. Patenković, A., Tanasković, M., Erić, P., Erić, K., Mihajlović, M., Stanisavljević, L., & Davidović, S. (2022). Urban ecosystem drives genetic diversity in feral honey bee. Scientific reports, 12(1): 1-14. https://doi.org/10.1038/s41598-022-21413-y
43. Plate, M., Bernstein, R., Hoppe, A., & Bienefeld, K. (2019). The importance of controlled mating in honeybee breeding. Genetics selection evolution, 51(74): 1-14. https://doi.org/10.1186/s12711-019-0518-y
44. Quinlan, G.M., Isaacs, R., Otto, C.R.V. Smart, A. H., & Milbrath, M. O. (2023). Association of excessive precipitation and agricultural land use with honey bee colony performance. Landscape ecology, 38:1555–1569. https://doi.org/10.1007/s10980-023-01638-6
45. Rahimi, A., Kahrizi, D., Mirmoayedi, A., Zarei, L., &,Jamali, S. (2023). Genetic Characterizations of the Iranian Honey Bee (Apis mellifera meda Skorikov 1929) Populations Using the Microsatellite DNA Markers. Biochemical genetics, 61: 2293–2317. https://doi.org/10.1007/s10528-023-10368-y
46. Requier, F., Antúnez, K., Morales, C. L., Aldea Sánchez, P., Castilhos, D., Garrido, P. M., Giacobino, A., Reynaldi, F. J., Rosso Londoño, J. M., Santos, E., & Garibaldi, L. A. (2018). Trends in beekeeping and honey bee colony losses in Latin America. Journal of apicultural research, 57(5): 657–662. http://dx.doi.org/10.1080/00218839.2018.1494919
47. Ruvolo-Takasusuki, M. C. C., Pozza, A. P. B. C., Oliveira, A. P. N. Z., Parpinelli, R. S., Costa-Maia, F. M., Faquinello, P., & Toledo, V. A. A. (2016). Improvement and selection of honeybees assisted by molecular markers. Beekeeping and Bee Conservation–Advances in Research. InTech, Croatia. 10(62426): 63-75. http://dx.doi.org/10.5772/62426
48. Sauvager, B. (2019). Hérédité chez l'abeille et les colonies d'abeilles. 126 p. Anercea. https://abeilles.ch/wp-content/uploads/sites/7/2023/03/Lu_Sauvager_2019_heredite.pdf
49. Schaumann, F., Norrström, N., Niklasson, M., & Leidenberger, S. (2024). Ecological comparison of native (Apis mellifera mellifera) and hybrid (Buckfast) honeybee drones in southwestern Sweden indicates local adaptation. PLOS ONE 19(8): 1-23. https://doi.org/10.1371/journal.pone.0308831
50. Sgroi, G., D’Auria, L. J., Lucibelli, M. G., Mancusi, A., Proroga, Y. T. R., Esposito, M., Rea, S., Signorelli, D., Gargano, F., D’Alessio, N., Manoj, R. R. S., Khademi, P., & Rofrano, G. (2025). Bees on the run: Nosema spp. (Microsporidia) in Apis mellifera and related products, Italy. Frontiers in veterinary science, 11: 1-7. https://doi.org/10.3389/fvets.2024.1530169
51. Spivak, M., & Reuter, G. (2021). A Sustainable Approach to Controlling Honey Bee Diseases and Varroa Mites. (n.d.). SARE. Retrieved November 3, 2022, from https://www.sare.org/resources/a-sustainable-approach-to-controlling-honey-bee-diseases-and-varroa-mites/
52. Sprau, L., Gessler, B., Liebsch, M., Traynor, K., Rosenkranz, P., & Hasselmann, M. (2024). The selection traits of mite non-reproduction (MNR) and Varroa sensitive hygiene (VSH) show high variance in subsequent generations and require intensive time investment to evaluate. Apidologie, 55:68: 1-15 https://doi.org/10.1007/s13592-024-01110-7
53. Tanasković, M., Erić, P., Patenković, A., Erić, K., Mihajlović, M., Tanasić, V., Kusza, S., Oleksa, A., Stanisavljević, L., & Davidović, S. (2022). Further Evidence of Population Admixture in the Serbian Honey Bee Population. Insects, 13(2): 180. https://doi.org/10.3390/insects13020180
54. Toby P. N. Tsang, A. A. Amado De Santis, Gabriela Armas-Quiñonez, John S. Ascher, Eva Samanta Ávila-Gómez, András Báldi, Kimberly M. Ballare, Mario V. Balzan. (2025). Land Use Change Consistently Reduces α- But Not β- and γ-Diversity of Bees. Global change biologi, 31(1): 1-18. https://doi.org/10.1111/gcb.70006
55. Uzunov, A., Brascamp, E. W., & Büchler, R. (2017). The Basic Concept of Honey Bee Breeding Programs. Bee World, 94(3): 84–87. https://doi.org/10.1080/0005772X.2017.1345427
56. Uzunov, A., Brascamp, E. W., Du, M., & Büchler, R. (2022). Initiation and Implementation of Honey Bee Breeding Programs. Bee World, 99(2): 50–55. https://doi.org/10.1080/0005772X.2022.2031545
57. Yarovets, V. I., Babenko, V. V., Galatiuk, O. E., & Cherevatov, O. V. (2023). Praktychne vykorystannia klasychnoi morfometrii kryl trutniv [Practical use of classical drone wing morphometry]. Naukovo-vyrobnychyi zhurnal Bdzhilnytstvo Ukrainy, 1(10):83–94.http://doi.org/10.46913/beekeepingjournal.2022.10.11. (in Ukrainian).
58. Zhang, W., Jiang, Z., Ding, M., Wang, X., Huang, A., Qiu, L., & Qi, S. (2025). Novel neonicotinoid insecticide cycloxaprid exhibits sublethal toxicity to honeybee (Apis mellifera L.) workers by disturbing olfactory sensitivity and energy metabolism. Journal of hazardous materials, 485:136923. https://doi.org/10.1016/j.jhazmat.2024.136923