THE USE OF CHLORELLA VULGARIS BEIJER. IN BIOREMEDIATION ACTIVITIES
DOI:
https://doi.org/10.31861/biosystems2020.01.026Ключові слова:
algae, Chlorella vulgaris Beijer, bioremediation, wastewaterАнотація
The article focuses on the possibility of applying the green alga Chlorella vulgaris Beijer. culture to bioremediation activities. Two types of wastewater were simulated, agricultural (ACW) and domestic (DW). The experiment was conducted under laboratory conditions in 500-ml Erlenmeyer flasks. The ratio of the amount of the algal culture and the wastewater volume was 1:10. The content of NO3-, NO2-
and NH4+ in the composition of the wastewater was tested before and after cultivating the alga; during cultivation, the pH of the culture medium and the optical density of the Ch. vulgaris culture were monitored. The indicators of the amount of various forms of nitrogen and the pH level show that simulated domestic and agricultural wastewater can serve as an alternative nutrient medium for growing green algae. The use of Ch. vulgaris for the treatment of domestic and agricultural effluents allows avoiding almost completely their nitrate and ammonia pollution. The amount of biomass obtained within 25 days of cultivating Ch. vulgaris on agricultural sewage was two times higher than in the control Tamiya medium. Resulting Ch. vulgaris algal mass with the proteins content of 55% and lipids reaching 30% can match various needs being used a source of protein or lipids.
Посилання
Arumugam M., Agarwal A., Arya M.C., Ahmed Z. Influence of organic waste and inorganic nitrogen source on the productivity of Scenedesmus and Chlorococcum sp. Int. J. Energy Environ. 2011; 2: 1125-1132.
Becker E. W. Micro-algae as a source of protein. Biotechnol. Adv. 2007, 25: 207. doi:10.1016/j.biotechadv.2006.11.002
Cheban L., Malischuk I., Marchenko M. Peculiarities of cultivation Desmodedesmus armatus (Chocl.) Hegew. іn the washwater from RAS. Arch. Pol. Fish. 2015; 23 (3): 155-162. DOI 10.1515/aopf-2015-0018
Cheunbarn T., Cheunbarn S. Cultivation of algae in vegetable and fruit canning industrial wastewater treatment effluent for tilapia (Oreochromis niloticus) feed. Survival. 2015; 1 (F2): 100. DOI: 10.17957/IJAB/17.3.14.502
Delgadillo-Mirquez L., Lopes F., Taidi B., Pareau D. Nitrogen and phosphate removal from wastewater with a mixed microalgae and bacteria culture. Biotechnol Rep. 2016; 11: 18–26. doi: 10.1016/j.btre.2016.04.003
Edmundson S.J., Wilkie A.C. Landfill leachate: a water and nutrient resource for algae-based biofuels. 30 Biological systems. Vol. 12. Is. 1. 2020 Environ. Technol. 2013; 34: 1849-1857. DOI: 10.1080/09593330.2013.826256
Fenton O. Agricultural nutrient surpluses as potential input sources to grow third generation biomass (microalgae): a review. Algal Res. 2012; 1: 49-56. DOI: 10.1016/j.algal.2012.03.003
Guiry M.D., Guiry G.M. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. - 2020. https://www.algaebase.org
Gupta S.K., Ansari F.A., Shriwastav A., et all. Dual role of Chlorella sorokiniana and Scenedesmus obliquus for comprehensive wastewater treatment and biomass production for biofuels. J. Clean. Product. 2016; 115: 255-264. https://doi.org/10.1016/j.jclepro.2015.12.040
Hemaiswarya S., Raja R., Kumar R.R., et all. Microalgae: a sustainable feed source for aquaculture. World J Microbiol Biotechnol. 2011; 27(8): 1737– 1746.
Heredia-Arroyo Т., Wei W., Ruan R., Hu B. Mixotrophic cultivation of Chlorella vulgaris and its potential application for the oil accumulation from nonsugar materials. Biomass and Bioenergy. 2011; 35(5): 2245–2253. https://doi.org/10.1016/j.biombioe.2011.02.036
Hevorhyz R.H., Shchepachyov S.H. Metodyka yzmerenyia plotnosty suspenzyy nyzshykh fototrofov na dlyne volnы sveta 750 nm. – Sevastopol: Otdel byotekhnolohyy y fytoresursov YnBIuM NAN Ukraynu, 2008. – 10 s. (In Russian).
Knight J.A., Anderson S., Rawle J.M. Chemical basis of the sulfo-phospho-vanillin reaction for estimating total serum lipids. Clin. Chem. 1972; 199 – 202.
Lowry O.H., Rosebrough N. J., Farr A.L., Randall R. J. Protein measurement with the Folin phenol reagent Journ. Biol. Chem. 1951; 193: 265-275.
Matamoros V., Guti_errez R., Ferrer I., et all. Capability of microalgae-based wastewater treatment systems to remove emerging organic contaminants / a pilot-scale study. J. Hazard. Mater. 2015; 288: 34–42. doi: 10.1016/j.jhazmat.2015.02.002.
Mook W.T., Chakrabarti M.H., Aroua M.K., et all. Removal of total ammonia nitrogen (TAN), nitrate and total organic carbon (TOC) from aquaculture wastewater using electrochemical technology. A review. Desalination. 2012; 285: 1–13. DOI: 10.1016/j.desal.2011.09.029
Norvill Z.N., Shilton A., Guieysse B. Emerging contaminant degradation and removal in algal wastewater treatment ponds: identifying the research gaps. J. Hazard. Mater. 2016; 313: 291–309. doi: 10.1016/j.jhazmat.2016.03.085.
Prodip K.P., Omprakash S. Quality and management of waste water in sugar industry. Appl Water Sci. 2017; 7: 461-468. https://doi.org/10.1007/s13201-015- 0264-4
Xu H, Miao X, Wu Q. High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. Journal of Biotechnology. 2006; 126: 499–507. Doi: 10.1016/j.jbiotec.2006.05.002
Zhou W., Mohr M., Ruan R. Mass cultivation of microalgae on animal wastewater: a sequential twostage cultivation process for energy crop and omega3-rich animal feed production. Appl. Biochem. Biotechnol. 2012; 168 (2): 348–363. DOI: 10.1007/s12010-012-9779-4
Zolotaryova EK, Shnyukova EI, Syvash OO, Mykhailenko NPh. The prospects of microalgae use in biotechnology. Kyiv: Altpress; 2009: T. 19. 2: 243 (in Ukrainian)