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The main goal of the mathematical experiment was to compare the accuracy of the construction of predicative maps,
depending on the type of input data, in particular the soil map and the complete or abbreviated (without definitions by
composition of grain size) variants of the cartograms of agro-industrial soil groups. The tasks were solved: by building
a digital relief model (DEM); digitization of cartographic materials, generation of a set of maps of morphometric and
other derived characteristics, the analysis of the connections and the role of the mentioned parameters in the variability
of the soil cover; creation of predicative map-versions of soils and cartograms of agro-industrial groups of soils. Object
of research: a fragment of the territory of the Chernivtsi region with complex geomorphological conditions. Main
methods used: correlation analysis; the principal component method; predicative algorithms Decision Trees, Random
Forests and K-Nearest Neighbors. On the basis of the correlation analysis, the tightness of the connection and the role
of predictors (independent variables) in the variability of the soil cover were assessed, and the analysis of the main
components involved the selection of 9 basic ones: absolute altitude,; topographic moisture index; the amount of solar
radiation per unit area; steepness of slopes; longitudinal and maximum curvature of the topographic surface;
accumulation, length and distance to water flow. The quality of predicted cartographic materials was estimated using
the Cohen’s kappa coefficient. Differences in the qualitative characteristics of the obtained simulated map-versions are
established and it is shown that the morphometric parameters of the relief and its derivatives are a reliable basis for
predicative modeling. An extended assessment of the quality of the map-models is made, depending on the type of input
data and it is shown that the most accurate predictor cartogram of complete agro-industrial soil groups is used with the
set of predictors used. Differences in the quality of predictive soil maps were established by using 3 types of predicative
algorithms and it was shown that classification models, in particular, Decision Trees and Random Forests, which
allowed obtaining up to 93% of the coincidence of real and model data, were the most suitable for such tasks. The
possibilities of constructing forecast maps of soils using a standard set of materials that can be accessed by soil
scientists in modern Ukrainian realities are shown: soil and topographic maps in conjunction with free full-featured
software - GRASS and Quantum geoinformation systems, Easy Trace vectorizer and R-Statistic, language and
environment for statistical computing.

Key words: soil map, cartogram of agro-industrial groups of soils, training data set, simulation, morphometric
parameters, DEM, predicative algorithms.

Introduction. Consideration of the situation
regarding the relevance of large-scale soil mapping
materials in Ukraine (Polchina et al., 2004; Achasov
et al. 2015; Cherlinka, 2017) shows that there will be
no quick solution to existing problems in the near
future. Nearly a quarter of the country's territory (in
particular, the mountainous systems of the
Carpathians and the Crimea, plain-covered areas of
forest vegetation, areas of the number of settlements,
etc.) have never been covered by continuous soil-
based surveying. In modern economic conditions, it
is not worthwhile to expect to allocate funds for
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actualization of existing materials and to study white
spots. Similar problems exist not only in Ukraine or
in a number of other developing countries, but also
in countries such as Australia (Bui and Moran,
2003). Therefore, the logical step is to fill the gaps
in cartographic information with predicted data.
Indeed, over the past decades, the number of such
studies devoted precisely to the simulation of the
spatial location of taxonomic soil wunits has
considerably increased (Bui and Moran, 2003;
McBratney et al., 2003; Scull et al., 2003; Walter et
al., 2006; MacMillan, 2008; Browning and
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Duniway, 2011; Caten et al., 2013; Brungard et al.,
2015; Malone et al., 2016; Heung et al., 2016, 2017).
In this case, a wide range of mathematical methods
is used: from multifactorial regression analysis,
kriging, neural networks to different types of
classification trees (Florinsky, 2016). The general
idea underlying the application of such methods is to
use the reference points of the landscapes and soil
taxa associated with them (Lagacherie et al., 2001).
The main source of predictors in this direction of
simulation is the digital model of relief (DEM), the
analysis of which allows to distinguish a number of
geomorphological and related parameters. Since
model variables (types of soils) do not refer to the
numerical, but to the categorical type of data, and
the indicators derived from the DEM are usually
numeric, the use of advanced mathematical methods
only allows us to establish the non-obvious, on the
first view, dependence between all these parameters
(Giasson et al., 2008; Kempen et al., 2009; Debella-
Gilo and Etzelmiiller, 2009; Hengl, 2009; Malone et
al., 2016; Cherlinka, 2017).

The general simulation procedure involves the
allocation of a certain portion of the data from the
population under study for machine learning and the
subsequent simulation is already based on this data.
Feng and Michie (1994) characterizes this process
through such stages: generation of training data set;
training algorithm; creation of classification rules;
testing on a complete set of data. In our case, the
main task of constructing a training sample for the
subsequent construction of a forecast ground map
(or any other map with categorical data) is the
choice of such points, the spatial location of which
would most fully cover the variation of taxonomic
units of soil and their predictors. Modeling a model
on this sample allows you to establish relationships
and relationships between these all parameters and
then transfer the resulting results to the entire study
area. It also enables extrapolation of results beyond
the existing ground maps, since a set of predictors is
obtained on the basis of DEM, which covers the
entire territory.

By constructing a set of training data clearly
distinguish 2 approaches (Brungard et al., 2015;
Heung et al., 2016; Heung et al., 2017): data on soil
cuts laid out in field conditions and a sample of
clearly defined contours of ground maps. The first
approach has good prospects, but requires a large
established database of verified soil cuts, with which
there are currently problems. Ukraine is currently at
the beginning of the path to establishing such a data
bank throughout the country with complete and
comprehensive information on the soil profiles
(Postanova Prezydiji Nacionaljnoji akademiji ..,
2017). Therefore, we use a different approach, as
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more relevant in the immediate time perspective and
easier to implement in the current modeling
environment.

Note that a number of predictive algorithms,
especially when using large sets of training sample,
give a high degree of coincidence of predictive and
real classification units, which does not always
correspond to such accuracy in the entire volume of
data. When using similar inputs data, different
results can be obtained. In this case, we mean, at the
same time, soil maps and cartograms of
agroindustrial groups of soils that are more often
used in production conditions.

Accordingly, the task of this study was to cover
the predicative modeling variants using as inputs a
soil maps and cartograms of their agroindustrial
groups and highlight those methods that give the
best results as a result of forecasting. This is
important given that predicative maps are interesting
not only as an object of scientific study, but as an
important tool for obtaining information on soil
cover, in locations where studies have not yet been
conducted. Therefore, the higher the degree of
coincidence of the forecast data with the real map,
the more grounded will be the conclusions about the
information, localized in "white spots" of large scale
maps. The latter is relevant and important in light of
the optimization of normative monetary valuation of
land and other scientific and practical tasks of the
present.

Accordingly, the purpose of our work was to
study the input data options and their impact on the
qualitative characteristics of simulative soil maps by
conducting a mathematical experiment using a
typical set of materials that can be potentially
available to ordinary soil scientist or scientist in
contemporary Ukrainian realities. We refer to them
large-scale soil and topographical maps, cartograms
of agro-industrial groups of soils (M1:10000) and
free software — geographic information systems
GRASS (GRASS Development Team, 2017) and
Quantum (QGIS Development Team, 2015),
vectorizer Easy Trace (EasyTrace group, 2015);
language and environment for statistical computing
R-statistic (R Development Core Team, 2017).

Materials and methods. In accordance with the
stated goal, we identified the following tasks: a)
digitization and attribution vector information of
cartographic materials; b) creation DEM with a
resolution equal to 20 m; c) analysis of digital
elevation models and extraction from them in the
GIS GASS of set of maps of morphometric and
other derivative characteristics; d) generation of
training samples according to the described
methodological approaches; e) creation in R-statistik
of simulation models using 3 types of predicative
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algorithms both for areas with available soil
information and for those where it is not
represented; g) analysis of the obtained results and
conclusions about the optimal source material for
predictive modeling.

As an object, a fragment of the territory of
Ukraine (Fig. la) within the boundaries of the
Chernivtsi region was selected (Fig. 1b), confined to
the Prtut-Dniester interfluve (Northern Bukovina)
with contrasting geomorphological conditions and
administratively owned by the Kitsman district (Fig.
Ic). This area has different administrative
subordination and economic use, and when it was
selected, typical problems that often arise in the
work of this nature were solved (Cherlinka and
Dmytruk, 2014; Cherlinka, 2015; Cherlinka, 2017).
The coordinate system of the project was selected
SC 1963 (zone X2), 6 scanned sheets of topographic
maps M 1:10000, in particular M-35-124-Vg-
{1,2,3,4}, M-35-124-Vb-3 and M-35-124-V-v-2
(Fig. 1d) were georectified using by created vector
mathematical basis, and the georectified of
cartograms of agro-industrial groups of soils was
carried out to the characteristic points of the locality
and the administrative boundaries of existing rural
councils: Nepolokivtsi (Nepolokivtsi) "A",
Beregomet (Beregomet and Revakhivtsi) — "B", and
Dubivtsi (Dubivtsi) — "C" of Kitsman district of
Chernivtsi region. Informative soil materials were
based on a series of archival soil maps of the
collective farm "Soviet Ukraine" (soil survey of
1957 year and correction in 1974). After the
consolidation of the nomenclature list of soils into a
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single system and harmonization of contours and
types of soils, the information was digitized and
preliminary data on the percentage of coverage of
the territory by soil surveys were obtained: from
4424,32 hectares of the total area for 1086,84
hectares, or 24,86%, data fully are absent (Fig. 2,
Table 1). "White" spots are confined to the territory
of settlements and forest areas that are within the
boundaries of the mentioned village councils.

A step of 20 m was chosen as the base resolution
of the DMP, which, with a relatively high accuracy
of the reproduction of the topography, also provides
a satisfactory coincidence of the areas of vectorized
and rasterized soils. To process the data, the tools of
the free software were used: georegistration of the
cartographic material - GIS Quantum (QGIS
Development Team, 2015), digitization - Easy Trace
(EasyTrace  group, 2015), preparation of
morphometric parameters and generation of DEM —
GRASS GIS (GRASS Development Team, 2017)
and the simulation of soil maps - language and
environment for statistical computing R-statistic (R
Development Core Team, 2017). Based on the
digital model of relief with a resolution of 20 m, a
number of morphometric characteristics of the relief
were provided as predictors: slope and aspect,
curvature of the surface (longitudinal and
maximum), solar radiation and relief forms.
Additional maps of hydrological indicators were
also generated: the topographic wetness index,
accumulation, direction and length of water streams
and the distance to them.

b)

d)

Fig. 1. Geographical location of the research area within Ukraine (a), Chernivtsi region (b), Kitsman district (c),
and the scheme of the test ground (d) * for the background data used SRTM — NASA’s Shuttle Radar Topography
Mission
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To create simulation models of soil cover, we
wrote a script in the language R-statistic (R
Development Core Team, 2017), which includes a
number of adaptations for solving the tasks and
implements 14 basic types of predicative algorithms,
of which 3 were used in this study, in particular: 1.
Decision Trees - DT (Venables and Riley, 2002). 2.
Random Forests - RF (Breiman, 2001; Cutler et al.,
2012). 3. K-Nearest Neighbor - KNN Liu, 2011).

The quality of the obtained models was evaluated
on the basis of the Cohens kappa index x (Landis
and Koch, 1977; Li and Zhang, 2007; Grinand et al.,
2008; Kuhn, 2008; Hengl, 2009; Malone et al.,
2016), which in this case shows the degree of
correspondence between the original and the
simulated data.

Results and discussion. First of all, it should be
noted that the use of digitized soil materials that are
available in the system of the State Geocadastre of
Ukraine is impossible given the very large number
of errors contained therein. The most important of
these are faults in geo-rectification, which lead to the
fact that the lowlands or thalweg are located on the
peaks or slopes of the hills. The second type of error
is attribution errors when the soil name on the map
does not match its vector counterpart. Therefore, for
the qualitative modeling and correct analysis of the
results obtained, it is necessary to re-vectorize.

In this experiment, we did not use the
methodology for creating a training sample (Dobos
and Hengl, 2009; Hengl, 2009), but a randomized,
weighted, which shows much better results in our
studies.  Unlike the median-weighted, by
randomized-weighted approach, has no any problem
with reducing the actual number of points in the
training data set and allows you to get precisely
those proportions between the training cells and the
total sample size, which is conditioned by the
conditions of the planned experiment, in particular
coverage of 35% of the area of the surveyed soils.

Three main cartographic sources were also
prepared: 1) an original map of soils; 2) cartogram
of agro-industrial groups of soils; 3) shortened
cartogram of agro-industrial groups of soils. The last
map includes agro-industrial groups of soils without
their division in granulometric composition. Thus,
variants with a different number of prediction
elements were received: 29, 22 and 16 for each of
the maps respectively (Table 1). Such a set of
experiment variants, in combination with 3 predicate
algorithms, allowed to obtain 9 sets soil cover
simulations, the analysis of which revealed quite
interesting patterns.

The resulting array of simulations of soil cover is
interesting in terms of its correspondence to original
maps, and, accordingly, predictive "force" in areas
with no information. Since the algorithms analyze
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the entire spectrum of predicate parameters,
producing classification rules, with a high degree of
coincidence of model and real data, one can talk
about a certain level of statistical accuracy of data in
the areas of "white spots". The results we get in this
regard can be called quite encouraging given the
range of values obtained x (Table 2). If we rank the
models by criteria of increasing the quality of the
prediction by the x main data set, then the KNN
algorithm showed the worst results among others.
They follow in the order of increasing RF and DT.
The last two algorithms belong to the classification
methods, and their high results testify to the greatest
suitability of such approaches in simulations of soil
cover.

A step of 20 m was chosen as the base resolution
of the DMP, which, with a relatively high accuracy
of the reproduction of the topography, also provides
a satisfactory coincidence of the areas of vectorized
and rasterized soils. To process the data, the tools of
the free software were used: georegistration of the
cartographic material - GIS Quantum (QGIS
Development Team, 2015), digitization - Easy Trace
(EasyTrace  group, 2015), preparation of
morphometric parameters and generation of DEM —
GRASS GIS (GRASS Development Team, 2017)
and the simulation of soil maps - language and
environment for statistical computing R-statistic (R
Development Core Team, 2017). Based on the
digital model of relief with a resolution of 20 m, a
number of morphometric characteristics of the relief
were provided as predictors: slope and aspect,
curvature of the surface (longitudinal and
maximum), solar radiation and relief forms.
Additional maps of hydrological indicators were
also generated: the topographic wetness index,
accumulation, direction and length of water streams
and the distance to them.

In general, the prediction for full cartograms of
agro-industrial groups of soils work better than for
abbreviated cartograms, and especially for soil
maps. Since the soil map is the most diverse on the
soil taxons, the dropping of the kappa value becomes
clear. The KNN algorithm stands out slightly, which
showed somewhat different results: it has the best
prediction of 78.51% for the soil map, and the worst
68.82% for the full agrogroups of soils. In any case,
Decision Trees and Random Forest are the most
powerful algorithms that can simulate the
distribution of soil deviations and agro-industrial
groups of soils with x equal to 82.66-93.09% in case
with 35% saturation of the training data set with the
source data (Fig. 3). In general, for these algorithms,
it is characteristic of almost 100% coincidence of the
calculated data from the training sample with their
real values.
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Table 1.

Variants of the encoding of soil taxons of the territory of simulation

Id Standart
agrosoil  agrosoil
simple code
0 nodata
1 40d

2 51d
2 51d

3 133 ¢
3 1331
3 133d
3 133 ¢
3 133 ¢
4 142 ¢
5 141 e
5 141 e
6 49d

5 141 e
6 1391
7 176 d
8 175v
7 176 g
9 181d
10 215¢
10 215¢
10 215¢
11 219 ak
12 41¢g
12 41d
13 209d
6 49¢g

6 49d

6 49e
16 50d

Code of

soil

nodata
11
101

111

12 ad
13a
14 a
15a
16a
17 a
18a
19 al
21

20d
21d
22a
23 al
24 al
25al
261

27 a

281
29 al km
31
41
5dl
61
71

81

91

Name of soil

Temno-siri lisovi

Chornozemy opidzoleni serednozmyti z pliamamy 30-50%
sylnozmytykh

Chornozemy opidzoleni sylnozmyti

Chornozemno-luchni mocharysti

Luchni hlyboki vyluhovani

Luchni pyluvato-serednosuhlynkovi

Luchni pyluvato-vazhkosuhlynkovi

Luchni hleiovi

Luchno-bolotni osusheni

Bolotni pyluvato-vazhkosuhlynkovi na davnomu aliuviiu
Bolotni pyluvato-vazhkosuhlynkovi na suchasnomu aliuviiu
Temno-siri lisovi slabozmyti

Bolotni pyluvato-vazhkosuhlynkovi na suchasnomu deliuviiu
Bolotni mocharysti

Dernovi hlyboki karbonatni

Dernovi karbonatni supishchani

Dernovi karbonatni pishchano-lehkosuhlynkovi

Dernovi karbonatni hleiovi namyti

Slabozadernovani skhyly yariv ta krutykh ustupiv pyluvato-
vazhkosuhlynkovi na lesovydnykh suhlynkakh
Slabozadernovani skhyly yariv ta krutykh ustupiv pyluvato-
vazhkosuhlynkovi na davnomu aliuviiu

Vykhody porid

Ruslovi vidklady

Chornozemy opidzoleni pyluvato-lehkosuhlynkovi
Chornozemy opidzoleni pyluvato-serednosuhlynkovi
Chornozemy opidzoleni hleiuvati namyti

Chornozemy opidzoleni slabozmyti pyluvato-lehkosuhlynkovi

Chornozemy opidzoleni slabozmyti pyluvato-
serednosuhlynkovi

Chornozemy opidzoleni slabozmyti z pliamamy 10-30%
serednozmytykh

Chornozemy opidzoleni serednozmyti

Fig. 2. A digital model of the relief of the research area draped with the original soil map (the soil numbers
correspond to their serial numbers in the nomenclature list in Table 1)
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Table 2.
The distribution of the index k depending on the input data and the type of simulation model

Type of simulation model

Modeling options DT RF KNN
K; K K; K K, K
Soil map 86,91 83,74 86,90 82,66 82,31 78,51
Cartograms of full agrogroups 99,96 93,09 100,00 92,90 83,46 68,82
Cartograms of reduced agrogroups 99,94 91,54 100,00 90,71 80,43 70,77

* K, - kappa of training data set, x - kappa of main data set

Concerning the lower quality of the prediction of
soils in comparison with agrogroups of soils, it can be
assumed that the used set of predictors of the model
does not fully describe the definitions of the
distribution of soils on the elements of the relief.
Therefore, the study of this issue will be the subject of
our next research.

An analysis of the level of comparability of our
results on the quality of simulation with similar studies
shows that the kappa of our models exceeds the
averaged values from literary sources. So, in the work
(Hengl, 2009) 51-67% is considered a good indicator.
In work Grinand et al. (2008) x=67-87% for the study
sample and is about 30% for the main data set. For
small-scale soil maps Giason et al. (2008) obtained x
37-54%, and Malone et al. (2016) its value ranges from
35-40%. According to the ranges given by Landis and
Koch (1977), the results we have obtained and the
results described above have, in the worst cases, a

fragment of the DT model
soil map

fragment of the original
soil map

map of agro-groups of soils

significant convergence (x=0.61-0.80), and in the best
cases, almost complete convergence (x=0,81-0,99).
Accordingly, this allows us to assess the quality of
simulation card versions as good and not below the
level of similar literary data. In addition, we believe
that there is still some potential for increasing the
overall «, in particular by more accurately selecting the
model's predictors and extending their number by
incorporating Earth remote sensing data, anthropogenic
deposits maps, and more. A significant beneficial
effect of this kind of modeling is the ability to fill gaps
on existing cartographic materials with data from
predicative map-versions and, thus, obtaining
composite soil maps. This certainly does not exclude
the need for a large-scale soil survey of such areas, but
in the absence of the possibility of its carrying out, it
allows to obtain at least some scientific data with a
certain level of statistical reliability.

-
fragment of the DT model
map of reduced agro-
groups of soils

fragment of the DT model

DT model soil map

original soil map

DT model map of reduced
agro-groups of soils

DT model map of agro-
groups of soils

Fig. 3. Results of simulation of soil maps and agricultural production groups by the Decision Trees algorithm
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It also allows it to be used in applied problems of
soil science, agronomy, land management and land
management, that is, areas where the need for such
data is most acute.

Conclusions. The conducted mathematical
experiment has found that there is a significant
influence of initial cartographic materials on the
qualitative characteristics of simulative ground
maps, which are obtained through simulation using a
typical set of materials that can be potentially
available to ordinary soil scientist or specialist in
modern Ukrainian realities. It is shown that the
morphometric parameters of the relief and its
derivatives are a reliable basis for the predictive
modeling of the spatial distribution of soil taxons
with sufficiently high accuracy, and the presented
method has a significant perspective in solving main
scientific and production problems. An expanded
estimation of the quality of simulative soil maps has
been made at different variants of the initial data and
it has been shown that the most promising use is the
use of data of complete agro-industrial groups of
soils. The differences in the quality of predictive soil
maps were established using three types of
predictive algorithms and it has been proved that
classification models are the most suitable for such
problems, in particular Decisions Trees and Random
Forests.
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ITOPIBHAJIBHA OINIHKA TOYHOCTI CUMYJIATUBHOI'O MOJAEJIOBAHHSA
IPYHTOBOI'O IOKPUBY TA MNPOTHO3HUX KAPTOT'PAM ATPOBUPOBHUYUX
I'PYII ITPYHTIB

B. P. Uepuainka, FO. M. Imutpyk, B. C. 3axapoBcbkuii

OCHOBHOI0O Memoio MAMEeMAMUYHO20 eKCHepUMeHMmY OY10 NOPIBHAHHA MOYHOCMI NOOYO008U NPEOUKAMUBHUX KAPM
3ANeIHCHO BI0 PIZHOBUOY BGXIOHUX OAHUX, 30KDeMAd IPYHMOBOI Kapmu ma NO6HO20 i cKopouenoco (be3 Oeghiniyill no
SPAHYIOMEMPULHOMY CKAAOY) 6apiaHmie Kapmocpamu azposupobnuuux epyn 1pyumis. Ilocmaeneni 3as0anns
BUPIULYBANUCS: WAAXOM N00OY006uU Yudpoeoi moodeni penveyy (LIMP); oyudpysanusm kapmoepagiunux mamepianis;
2eHepayiero Habopy Kapm MOpGOMEemMPUYHUX MA HUUX NOXIOHUX XAPAKMEPUCMUK, AHANI30M MICHOMU 36 S3Ki6 ma
PO 32a0aHUX RAPAMEMPI8 Y MIHIUBOCI IPYHIMOB020 NOKPUBY,; CINBOPEHHAM NPEOUKAMUSHUX KAPM-6epCill IPYHMIE ma
Kapmozpam azposupobnuuux epyn tpyumis. Q6 ’ckm oocniodicens: ppazmenm mepumopii Yepniseyvkoi obnacmi 3i
cKkaaouumu 2eomopghonociunumu ymogamu. OCHOGHI BUKOPUCTNAHT MeMOOU: KOPeAAYIUHULL AHATI3, Memoo 20108HUX
Komnouenm, npeouxamuguvt arecopummu Decision Trees, Random Forests ma K-Nearest Neighbors. Ha ochnogi
KOpenayitinoeo ananizy Oyio oyineHo MmiCHOmMY 36 S13Ky Ma poab NPEeOUKMOpI6 (He3aNedCHUX 3MIHHUX) Y MIHAUBOCHE
IPYHMOBO20 NOKPUBY, WO 3 3ATYYEHHAM AHANIZY 20A08HUX KOMIOHEHM 003680110 obpamu 3 HUX 9 6a3o8ux: abconomua
sucoma, monoepagiunuil iHOeKC 80a020CMi; KIIbKICMb COHAYHOI padiayii Ha 0OUHUYIO NAOWI; KPYMICMb CXUNI;
N03008JICHL MA MAKCUMATbHA KPUBUIHA MONOSPAYTUHOL NOBEPXHI, AKYMYAAYIA, O08XHCUHA MA BI0CMAHL 00 BOOHUX
nomoxkie. Akicme NPOSHOZHUX KApmMozpapiuHux mamepianié oyiHeHo 3a donomozcow inoexcy kappa Koeena (Cohen’s
kappa coefficient). Bcmanoenerno 6iomMiHHOCMI y AKICHUX XAPAKMEPUCIUKAX OMPUMAHUX CUMYTIAMUGHUX KAPM-8epCill |
NOKA3AHO, WO MOpGOMempudHi napamempu penve@y ma 1020 0epueamu € HAOIUHUM 0aA3UCOM NPeOUKAMUBHOZO
MOO0eno8anHs. 3pooaeno po3uupery oyiHKy AKOCmi Kapm-mooenell 3a1exHCHO 6i0 MUny 6XiOHUX OaHux i NOKA3aHO, WO
HAUOINbW MOYHOI NPU BUKOPUCIAHOMY HAOOPI NPEOUKMOpPI6 € NPOSHO3HA KAPMOZpaAMa NOGHUX A2POBUPOOHUUUX 2PN
Ipynmie. Bcmanoeneno eiominmocmi y SAKOCMI  NPOSHO3HUX [PYHMOSUX Kapm npu euxopucmanui 3 munie
NpeouUKAMuUSHUX alc0pUmmie ma NOKA3aHO, W0 HAUOLIbUWL NPUOAMHUMU 0L MAK020 POdy 3a0ay € Kiacugikayiuni
modeni, 30kpema Decision Trees ma Random Forests, 3acmocysanns akux 0o3gonuno ompumamu 0o 93% cnienadinmsa
peanvHux ma mooenvhux oanux. Iloxazano moxcausocmi ujoo0o nooyo008uU NPOSHOIHUX KAPM IPYHMIE 3 BUKOPUCTNAHHAM
Mmunogozo Habopy mamepianie, AKi MOX4CYMb OYmMuU OOCMYNHUMU TPYHMO3HABYIO 8 CYHUACHUX VKPAIHCOKUX peanifax:
Kapmu Ipywmosa ma monozpagiyna i 0Oe3KoulmosHe NOBHOPYHKYIOHATbHE NpozpamHe 3abe3neyeHHs —
eeoingopmayitni cucmemu GRASS ma Quantum, eéexmopuszamop Easy Trace i moea cmamucmuynux po3paxynxie R-
Statistic.

Kniouoei crosa: rpynmosa kapma, xapmozpama asposupoOHUdUx 2pyn IPYHMIe, HAGUANbHA GUOIPKA, CUMYLAYIA,
mopomempuuni napamempu, LIMP, npeduxamueni arzcopummu.
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