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The main goal of the mathematical experiment was to compare the accuracy of the construction of predicative maps, 

depending on the type of input data, in particular the soil map and the complete or abbreviated (without definitions by 
composition of grain size) variants of the cartograms of agro-industrial soil groups. The tasks were solved: by building 
a digital relief model (DEM); digitization of cartographic materials; generation of a set of maps of morphometric and 
other derived characteristics; the analysis of the connections and the role of the mentioned parameters in the variability 
of the soil cover; creation of predicative map-versions of soils and cartograms of agro-industrial groups of soils. Object 
of research: a fragment of the territory of the Chernivtsi region with complex geomorphological conditions. Main 
methods used: correlation analysis; the principal component method; predicative algorithms Decision Trees, Random 
Forests and K-Nearest Neighbors. On the basis of the correlation analysis, the tightness of the connection and the role 
of predictors (independent variables) in the variability of the soil cover were assessed, and the analysis of the main 
components involved the selection of 9 basic ones: absolute altitude; topographic moisture index; the amount of solar 
radiation per unit area; steepness of slopes; longitudinal and maximum curvature of the topographic surface; 
accumulation, length and distance to water flow. The quality of predicted cartographic materials was estimated using 
the Cohen’s kappa coefficient. Differences in the qualitative characteristics of the obtained simulated map-versions are 
established and it is shown that the morphometric parameters of the relief and its derivatives are a reliable basis for 
predicative modeling. An extended assessment of the quality of the map-models is made, depending on the type of input 
data and it is shown that the most accurate predictor cartogram of complete agro-industrial soil groups is used with the 
set of predictors used. Differences in the quality of predictive soil maps were established by using 3 types of predicative 
algorithms and it was shown that classification models, in particular, Decision Trees and Random Forests, which 
allowed obtaining up to 93% of the coincidence of real and model data, were the most suitable for such tasks. The 
possibilities of constructing forecast maps of soils using a standard set of materials that can be accessed by soil 
scientists in modern Ukrainian realities are shown: soil and topographic maps in conjunction with free full-featured 
software - GRASS and Quantum geoinformation systems, Easy Trace vectorizer and R-Statistic, language and 
environment for statistical computing. 
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Introduction. Consideration of the situation 
regarding the relevance of large-scale soil mapping 
materials in Ukraine (Polchina et al., 2004; Achasov 
et al. 2015; Cherlinka, 2017) shows that there will be 
no quick solution to existing problems in the near 
future. Nearly a quarter of the country's territory (in 
particular, the mountainous systems of the 
Carpathians and the Crimea, plain-covered areas of 
forest vegetation, areas of the number of settlements, 
etc.) have never been covered by continuous soil-
based surveying. In modern economic conditions, it 
is not worthwhile to expect to allocate funds for 

actualization of existing materials and to study white 
spots. Similar problems exist not only in Ukraine or 
in a number of other developing countries, but also 
in countries such as Australia (Bui and Moran, 
2003). Therefore, the logical step is to fill the gaps 
in cartographic information with predicted data. 
Indeed, over the past decades, the number of such 
studies devoted precisely to the simulation of the 
spatial location of taxonomic soil units has 
considerably increased (Buі and Moran, 2003; 
McBratney et al., 2003; Scull et al., 2003; Walter et 
al., 2006; MacMіllan, 2008; Brownіng and 
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Dunіway, 2011; Caten et al., 2013; Brungard et al., 
2015; Malone et al., 2016; Heung et al., 2016, 2017). 
In this case, a wide range of mathematical methods 
is used: from multifactorial regression analysis, 
kriging, neural networks to different types of 
classification trees (Florіnsky, 2016). The general 
idea underlying the application of such methods is to 
use the reference points of the landscapes and soil 
taxa associated with them (Lagacherіe et al., 2001). 
The main source of predictors in this direction of 
simulation is the digital model of relief (DEM), the 
analysis of which allows to distinguish a number of 
geomorphological and related parameters. Since 
model variables (types of soils) do not refer to the 
numerical, but to the categorical type of data, and 
the indicators derived from the DEM are usually 
numeric, the use of advanced mathematical methods 
only allows us to establish the non-obvious, on the 
first view, dependence between all these parameters 
(Gіasson et al., 2008; Kempen et al., 2009; Debella-
Gіlo and Etzelmüller, 2009; Hengl, 2009; Malone et 
al., 2016; Cherlіnka, 2017). 

The general simulation procedure involves the 
allocation of a certain portion of the data from the 
population under study for machine learning and the 
subsequent simulation is already based on this data. 
Feng and Mіchіe (1994) characterizes this process 
through such stages: generation of training data set; 
training algorithm; creation of classification rules; 
testing on a complete set of data. In our case, the 
main task of constructing a training sample for the 
subsequent construction of a forecast ground map 
(or any other map with categorical data) is the 
choice of such points, the spatial location of which 
would most fully cover the variation of taxonomic 
units of soil and their predictors. Modeling a model 
on this sample allows you to establish relationships 
and relationships between these all parameters and 
then transfer the resulting results to the entire study 
area. It also enables extrapolation of results beyond 
the existing ground maps, since a set of predictors is 
obtained on the basis of DEM, which covers the 
entire territory. 

By constructing a set of training data clearly 
distinguish 2 approaches (Brungard et al., 2015; 
Heung et al., 2016; Heung et al., 2017): data on soil 
cuts laid out in field conditions and a sample of 
clearly defined contours of ground maps. The first 
approach has good prospects, but requires a large 
established database of verified soil cuts, with which 
there are currently problems. Ukraine is currently at 
the beginning of the path to establishing such a data 
bank throughout the country with complete and 
comprehensive information on the soil profiles 
(Postanova Prezydiji Nacionaljnoji akademiji .., 
2017). Therefore, we use a different approach, as 

more relevant in the immediate time perspective and 
easier to implement in the current modeling 
environment. 

Note that a number of predictive algorithms, 
especially when using large sets of training sample, 
give a high degree of coincidence of predictive and 
real classification units, which does not always 
correspond to such accuracy in the entire volume of 
data. When using similar inputs data, different 
results can be obtained.  In this case, we mean, at the 
same time, soil maps and cartograms of 
agroindustrial groups of soils that are more often 
used in production conditions. 

Accordingly, the task of this study was to cover 
the predicative modeling variants using as inputs a 
soil maps and cartograms of their agroindustrial 
groups and highlight those methods that give the 
best results as a result of forecasting. This is 
important given that predicative maps are interesting 
not only as an object of scientific study, but as an 
important tool for obtaining information on soil 
cover, in locations where studies have not yet been 
conducted. Therefore, the higher the degree of 
coincidence of the forecast data with the real map, 
the more grounded will be the conclusions about the 
information, localized in "white spots" of large scale 
maps. The latter is relevant and important in light of 
the optimization of normative monetary valuation of 
land and other scientific and practical tasks of the 
present. 

Accordingly, the purpose of our work was to 
study the input data options and their impact on the 
qualitative characteristics of simulative soil maps by 
conducting a mathematical experiment using a 
typical set of materials that can be potentially 
available to ordinary soil scientist or scientist in 
contemporary Ukrainian realities. We refer to them 
large-scale soil and topographical maps, cartograms 
of agro-industrial groups of soils (M1:10000) and 
free software – geographic information systems 
GRASS (GRASS Development Team, 2017) and 
Quantum (QGІS Development Team, 2015), 
vectorizer Easy Trace (EasyTrace group, 2015); 
language and environment for statistical computing 
R-statіstіc (R Development Core Team, 2017). 

Materials and methods. In accordance with the 
stated goal, we identified the following tasks: a) 
digitization and attribution vector information of 
cartographic materials; b) creation DEM with a 
resolution equal to 20 m; c) analysis of digital 
elevation models and extraction from them in the 
GIS GASS of set of maps of morphometric and 
other derivative characteristics; d) generation of 
training samples according to the described 
methodological approaches; e) creation in R-statistik 
of simulation models using 3 types of predicative 
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algorithms both for areas with available soil 
information and for those where it is not 
represented; g) analysis of the obtained results and 
conclusions about the optimal source material for 
predictive modeling. 

 As an object, a fragment of the territory of 
Ukraine (Fig. 1a) within the boundaries of the 
Chernivtsi region was selected (Fig. 1b), confined to 
the Prut-Dniester interfluve (Northern Bukovina) 
with contrasting geomorphological conditions and 
administratively owned by the Kitsman district (Fig. 
1c). This area has different administrative 
subordination and economic use, and when it was 
selected, typical problems that often arise in the 
work of this nature were solved (Cherlinka and 
Dmytruk, 2014; Cherlinka, 2015; Cherlinka, 2017). 
The coordinate system of the project was selected 
SC 1963 (zone X2), 6 scanned sheets of topographic 
maps M 1:10000, in particular M-35-124-Vg-
{1,2,3,4}, M-35-124-Vb-3 and M-35-124-V-v-2 
(Fig. 1d) were georectified using by created vector 
mathematical basis, and the georectified of 
cartograms of agro-industrial groups of soils was 
carried out to the characteristic points of the locality 
and the administrative boundaries of existing rural 
councils: Nepolokivtsi (Nepolokivtsi) – "A", 
Beregomet (Beregomet and Revakhivtsi) – "B", and 
Dubivtsi (Dubivtsi) – "C" of Kitsman district of 
Chernivtsi region. Informative soil materials were 
based on a series of archival soil maps of the 
collective farm "Soviet Ukraine" (soil survey of 
1957 year and correction in 1974). After the 
consolidation of the nomenclature list of soils into a 

single system and harmonization of contours and 
types of soils, the information was digitized and 
preliminary data on the percentage of coverage of 
the territory by soil surveys were obtained: from 
4424,32 hectares of the total area for 1086,84 
hectares, or 24,86%, data fully are absent (Fig. 2, 
Table 1). "White" spots are confined to the territory 
of settlements and forest areas that are within the 
boundaries of the mentioned village councils. 

A step of 20 m was chosen as the base resolution 
of the DMP, which, with a relatively high accuracy 
of the reproduction of the topography, also provides 
a satisfactory coincidence of the areas of vectorized 
and rasterized soils. To process the data, the tools of 
the free software were used: georegistration of the 
cartographic material - GIS Quantum (QGІS 
Development Team, 2015), digitization - Easy Trace 
(EasyTrace group, 2015), preparation of 
morphometric parameters and generation of DEM – 
GRASS GIS (GRASS Development Team, 2017) 
and the simulation of soil maps - language and 
environment for statistical computing R-statіstіc (R 
Development Core Team, 2017). Based on the 
digital model of relief with a resolution of 20 m, a 
number of morphometric characteristics of the relief 
were provided as predictors: slope and aspect, 
curvature of the surface (longitudinal and 
maximum), solar radiation and relief forms. 
Additional maps of hydrological indicators were 
also generated: the topographic wetness index, 
accumulation, direction and length of water streams 
and the distance to them. 

 
   
 

a)  b)    

c)     d)    

Fig. 1. Geographical location of the research area within Ukraine (a), Chernivtsi region (b), Kitsman district (c), 
and the scheme of the test ground (d) * for the background data used SRTM – NASA’s Shuttle Radar Topography 

Mіssіon 
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To create simulation models of soil cover, we 
wrote a script in the language R-statіstіc (R 
Development Core Team, 2017), which includes a 
number of adaptations for solving the tasks and 
implements 14 basic types of predicative algorithms, 
of which 3 were used in this study, in particular: 1. 
Decīšīon Trees - DT (Venables and Riley, 2002). 2. 
Random Forests - RF (Breiman, 2001; Cutler et al., 
2012). 3. K-Nearest Neighbor - KNN Lіu, 2011). 

The quality of the obtained models was evaluated 
on the basis of the Cohens kappa index κ (Landіs 
and Koch, 1977; Lі and Zhang, 2007; Grіnand et al., 
2008; Kuhn, 2008; Hengl, 2009; Malone et al., 
2016), which in this case shows the degree of 
correspondence between the original and the 
simulated data. 

Results and discussion. First of all, it should be 
noted that the use of digitized soil materials that are 
available in the system of the State Geocadastre of 
Ukraine is impossible given the very large number 
of errors contained therein. The most important of 
these are faults in geo-rectification, which lead to the 
fact that the lowlands or thalweg are located on the 
peaks or slopes of the hills. The second type of error 
is attribution errors when the soil name on the map 
does not match its vector counterpart. Therefore, for 
the qualitative modeling and correct analysis of the 
results obtained, it is necessary to re-vectorize. 

In this experiment, we did not use the 
methodology for creating a training sample (Dobos 
and Hengl, 2009; Hengl, 2009), but a randomized, 
weighted, which shows much better results in our 
studies. Unlike the median-weighted, by 
randomized-weighted approach, has no any problem 
with reducing the actual number of points in the 
training data set and allows you to get precisely 
those proportions between the training cells and the 
total sample size, which is conditioned by the 
conditions of the planned experiment, in particular 
coverage of 35% of the area of the surveyed soils. 

Three main cartographic sources were also 
prepared: 1) an original map of soils; 2) cartogram 
of agro-industrial groups of soils; 3) shortened 
cartogram of agro-industrial groups of soils. The last 
map includes agro-industrial groups of soils without 
their division in granulometric composition. Thus, 
variants with a different number of prediction 
elements were received: 29, 22 and 16 for each of 
the maps respectively (Table 1). Such a set of 
experiment variants, in combination with 3 predicate 
algorithms, allowed to obtain 9 sets soil cover 
simulations, the analysis of which revealed quite 
interesting patterns. 

The resulting array of simulations of soil cover is 
interesting in terms of its correspondence to original 
maps, and, accordingly, predictive "force" in areas 
with no information. Since the algorithms analyze 

the entire spectrum of predicate parameters, 
producing classification rules, with a high degree of 
coincidence of model and real data, one can talk 
about a certain level of statistical accuracy of data in 
the areas of "white spots". The results we get in this 
regard can be called quite encouraging given the 
range of values obtained κ (Table 2). If we rank the 
models by criteria of increasing the quality of the 
prediction by the κ main data set, then the KNN 
algorithm showed the worst results among others. 
They follow in the order of increasing RF and DT. 
The last two algorithms belong to the classification 
methods, and their high results testify to the greatest 
suitability of such approaches in simulations of soil 
cover. 

A step of 20 m was chosen as the base resolution 
of the DMP, which, with a relatively high accuracy 
of the reproduction of the topography, also provides 
a satisfactory coincidence of the areas of vectorized 
and rasterized soils. To process the data, the tools of 
the free software were used: georegistration of the 
cartographic material - GIS Quantum (QGІS 
Development Team, 2015), digitization - Easy Trace 
(EasyTrace group, 2015), preparation of 
morphometric parameters and generation of DEM – 
GRASS GIS (GRASS Development Team, 2017) 
and the simulation of soil maps - language and 
environment for statistical computing R-statіstіc (R 
Development Core Team, 2017). Based on the 
digital model of relief with a resolution of 20 m, a 
number of morphometric characteristics of the relief 
were provided as predictors: slope and aspect, 
curvature of the surface (longitudinal and 
maximum), solar radiation and relief forms. 
Additional maps of hydrological indicators were 
also generated: the topographic wetness index, 
accumulation, direction and length of water streams 
and the distance to them. 

In general, the prediction for full cartograms of 
agro-industrial groups of soils work better than for 
abbreviated cartograms, and especially for soil 
maps. Since the soil map is the most diverse on the 
soil taxons, the dropping of the kappa value becomes 
clear. The KNN algorithm stands out slightly, which 
showed somewhat different results: it has the best 
prediction of 78.51% for the soil map, and the worst 
68.82% for the full agrogroups of soils. In any case, 
Decision Trees and Random Forest are the most 
powerful algorithms that can simulate the 
distribution of soil deviations and agro-industrial 
groups of soils with κ equal to 82.66-93.09% in case 
with 35% saturation of the training data set with the 
source data (Fig. 3). In general, for these algorithms, 
it is characteristic of almost 100% coincidence of the 
calculated data from the training sample with their 
real values. 
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Table 1.  
Variants of the encoding of soil taxons of the territory of simulation 

 

Id 
soil 

Id 
agrosoil 

Id 
agrosoil 
simple 

Standart 
agrosoil 
code 

Code of 
soil 

Name of soil 

0 0 0 nodata nodata   
1 1 1 40 d 1 l Temno-siri lisovi 
2 2 2 51 d 10 l Chornozemy opidzoleni serednozmyti z pliamamy 30-50% 

sylnozmytykh 
3 2 2 51 d 11 l Chornozemy opidzoleni sylnozmyti 
4 3 3 133 e 12 ad Chornozemno-luchni mocharysti 
5 4 3 133 l 13 a Luchni hlyboki vyluhovani 
6 5 3 133 d 14 a Luchni pyluvato-serednosuhlynkovi 
7 6 3 133 e 15 a Luchni  pyluvato-vazhkosuhlynkovi 
8 6 3 133 e 16 a Luchni hleiovi 
9 7 4 142 e 17 a Luchno-bolotni osusheni 
10 7 5 141 e 18 a Bolotni pyluvato-vazhkosuhlynkovi na davnomu aliuviiu 
11 7 5 141 e 19 al Bolotni pyluvato-vazhkosuhlynkovi na suchasnomu aliuviiu 
12 8 6 49 d 2 l Temno-siri lisovi slabozmyti 
13 7 5 141 e 20 d Bolotni pyluvato-vazhkosuhlynkovi na suchasnomu deliuviiu 
14 9 6 139 l 21 d Bolotni mocharysti 
15 10 7 176 d 22 a Dernovi hlyboki karbonatni 
16 11 8 175 v 23 al Dernovi karbonatni supishchani 
17 12 7 176 g 24 al Dernovi karbonatni pishchano-lehkosuhlynkovi 
18 13 9 181 d 25 al Dernovi karbonatni hleiovi namyti 
19 14 10 215 e 26 l Slabozadernovani skhyly yariv ta krutykh ustupiv pyluvato-

vazhkosuhlynkovi na lesovydnykh suhlynkakh 
20 14 10 215 e 27 a Slabozadernovani skhyly yariv ta krutykh ustupiv pyluvato-

vazhkosuhlynkovi na davnomu aliuviiu 
21 14 10 215 e 28 l Vykhody porid 
22 15 11 219 ak 29 al km Ruslovi vidklady 
23 16 12 41 g 3 l Chornozemy opidzoleni pyluvato-lehkosuhlynkovi 
24 17 12 41 d 4 l Chornozemy opidzoleni pyluvato-serednosuhlynkovi 
25 18 13 209 d 5 dl Chornozemy opidzoleni hleiuvati namyti 
26 19 6 49 g 6 l Chornozemy opidzoleni slabozmyti pyluvato-lehkosuhlynkovi 
27 20 6 49 d 7 l Chornozemy opidzoleni slabozmyti pyluvato-

serednosuhlynkovi 
28 21 6 49 e 8 l Chornozemy opidzoleni slabozmyti z pliamamy 10-30% 

serednozmytykh 
29 22 16 50 d 9 l Chornozemy opidzoleni serednozmyti 

 

Fig. 2. A digital model of the relief of the research area draped with the original soil map (the soil numbers 
correspond to their serial numbers in the nomenclature list in Table 1) 
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The distribution of the index κ depending on the input data and the type of simulation model

Modeling options 

Soil map 

Cartograms of full agrogroups 

Cartograms of reduced agrogroups

* кt - kappa of training data set

 
Concerning the lower quality of the prediction of 

soils in comparison with agrogroups of soils, it can be 
assumed that the used set of predictors of the model 
does not fully describe the definitions of the 
distribution of soils on the elements of the relief. 
Therefore, the study of this issue will be the subject of 
our next research. 

 An analysis of the level of comparability of our 
results on the quality of simulation with similar studies 
shows that the kappa of our models exceeds the 
averaged values from literary sources. So, in the work 
(Hengl, 2009) 51-67% is considered a good indi
In work Grinand et al. (2008) κ=67-87% for the study 
sample and is about 30% for the main data set. For 
small-scale soil maps Giason et al. (2008) obtained 
37-54%, and Malone et al. (2016) its value ranges from 
35-40%. According to the ranges give
Koch (1977), the results we have obtained and the 
results described above have, in the worst cases, a 

 

fragment of the original 
soil map  

fragment of the DT model 

original soil map  DT model soil map

Fig. 3. Results of simulation of soil maps and agricultural production groups by the Decision Trees algorithm
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The distribution of the index κ depending on the input data and the type of simulation model

Type of simulation model

DT RF 

кt к кt к 

86,91 83,74 86,90 82,66 

99,96 93,09 100,00 92,90 

 99,94 91,54 100,00 90,71 

appa of training data set, к - kappa of main data set 

Concerning the lower quality of the prediction of 
soils in comparison with agrogroups of soils, it can be 
assumed that the used set of predictors of the model 
does not fully describe the definitions of the 

tribution of soils on the elements of the relief. 
Therefore, the study of this issue will be the subject of 

An analysis of the level of comparability of our 
results on the quality of simulation with similar studies 
shows that the kappa of our models exceeds the 
averaged values from literary sources. So, in the work 

67% is considered a good indicator. 
87% for the study 

sample and is about 30% for the main data set. For 
scale soil maps Giason et al. (2008) obtained κ 

54%, and Malone et al. (2016) its value ranges from 
According to the ranges given by Landis and 

Koch (1977), the results we have obtained and the 
results described above have, in the worst cases, a 

significant convergence (κ=0.61
cases, almost complete convergence (
Accordingly, this allows us to as
simulation card versions as good and not below the 
level of similar literary data. In addition, we believe 
that there is still some potential for increasing the 
overall κ, in particular by more accurately selecting the 
model's predictors and extending their number by 
incorporating Earth remote sensing data, anthropogenic 
deposits maps, and more. 
effect of this kind of modeling is the ability to fill gaps 
on existing cartographic materials with data from 
predicative map-versions and, thus, obtaining 
composite soil maps. This certainly does not exclude 
the need for a large-scale soil survey of such areas, but 
in the absence of the possibility of its carrying out, it 
allows to obtain at least some scientific data wit
certain level of statistical reliability. 

fragment of the DT model 
soil map 

fragment of the DT model 
map of agro-groups of soils 

fragment of the DT model 

DT model soil map DT model map of agro-
groups of soils 

 

Fig. 3. Results of simulation of soil maps and agricultural production groups by the Decision Trees algorithm
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Table 2.  
The distribution of the index κ depending on the input data and the type of simulation model 

Type of simulation model 

KNN 

кt к 

82,31 78,51 

83,46 68,82 

80,43 70,77 

=0.61-0.80), and in the best 
cases, almost complete convergence (κ=0,81-0,99). 
Accordingly, this allows us to assess the quality of 
simulation card versions as good and not below the 
level of similar literary data. In addition, we believe 
that there is still some potential for increasing the 

, in particular by more accurately selecting the 
s and extending their number by 

incorporating Earth remote sensing data, anthropogenic 
 A significant beneficial 

effect of this kind of modeling is the ability to fill gaps 
on existing cartographic materials with data from 

versions and, thus, obtaining 
composite soil maps. This certainly does not exclude 

scale soil survey of such areas, but 
in the absence of the possibility of its carrying out, it 
allows to obtain at least some scientific data with a 
certain level of statistical reliability.  

fragment of the DT model 
map of reduced agro-

groups of soils 

 DT model map of reduced 
agro-groups of soils 

Fig. 3. Results of simulation of soil maps and agricultural production groups by the Decision Trees algorithm 
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It also allows it to be used in applied problems of 

soil science, agronomy, land management and land 
management, that is, areas where the need for such 
data is most acute. 

Conclusions. The conducted mathematical 
experiment has found that there is a significant 
influence of initial cartographic materials on the 
qualitative characteristics of simulative ground 
maps, which are obtained through simulation using a 
typical set of materials that can be potentially 
available to ordinary soil scientist or specialist in 
modern Ukrainian realities. It is shown that the 
morphometric parameters of the relief and its 
derivatives are a reliable basis for the predictive 
modeling of the spatial distribution of soil taxons 
with sufficiently high accuracy, and the presented 
method has a significant perspective in solving main 
scientific and production problems. An expanded 
estimation of the quality of simulative soil maps has 
been made at different variants of the initial data and 
it has been shown that the most promising use is the 
use of data of complete agro-industrial groups of 
soils. The differences in the quality of predictive soil 
maps were established using three types of 
predictive algorithms and it has been proved that 
classification models are the most suitable for such 
problems, in particular Decisions Trees and Random 
Forests. 
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ПОРIВНЯЛЬНА ОЦIНКА ТОЧНОСТI СИМУЛЯТИВНОГО МОДЕЛЮВАННЯ 
ҐРУНТОВОГО ПОКРИВУ ТА ПРОГНОЗНИХ КАРТОГРАМ АГРОВИРОБНИЧИХ 

ГРУП ҐРУНТIВ 
 

 В. Р. Черлiнка, Ю. М. Дмитрук, В. С. Захаровський 

Основною метою математичного експерименту було порівняння точності побудови предикативних карт 
залежно від різновиду вхідних даних, зокрема ґрунтової карти та повного і скороченого (без дефініцій по 
гранулометричному складу) варіантів картограми агровиробничих груп ґрунтів. Поставлені завдання 
вирішувалися: шляхом побудови цифрової моделі рельєфу (ЦМР); оцифруванням картографічних матеріалів; 
генерацією набору карт морфометричних та інших похідних характеристик; аналізом тісноти зв’язків та 
ролі згаданих параметрів у мінливості ґрунтового покриву; створенням предикативних карт-версій ґрунтів та 
картограм агровиробничих груп ґрунтів. Об’єкт досліджень: фрагмент території Чернівецької області зі 
складними геоморфологічними умовами. Основні використані методи: кореляційний аналіз; метод головних 
компонент; предикативны алгоритми Decіsіon Trees, Random Forests та K-Nearest Neіghbors. На основі 
кореляційного аналізу було оцінено тісноту зв’язку та роль предикторів (незалежних змінних) у мінливості 
ґрунтового покриву, що з залученням аналізу головних компонент дозволило обрати з них 9 базових: абсолютна 
висота; топографічний індекс вологості; кількість сонячної радіації на одиницю площі; крутість схилів; 
поздовжня та максимальна кривизна топографічної поверхні; акумуляція, довжина та відстань до водних 
потоків. Якість прогнозних картографічних матеріалів оцінено за допомогою індексу kappa Когена (Cohen’s 
kappa coeffіcіent). Встановлено відмінності у якісних характеристиках отриманих симулятивних карт-версій і 
показано, що морфометричні параметри рельєфу та його деривати є надійним базисом предикативного 
моделювання. Зроблено розширену оцінку якості карт-моделей залежно від типу вхідних даних і показано, що 
найбільш точною при використаному наборі предикторів є прогнозна картограма повних агровиробничих груп 
ґрунтів. Встановлено відмінності у якості прогнозних ґрунтових карт при використанні 3 типів 
предикативних алгоритмів та показано, що найбільш придатними для такого роду задач є класифікаційні 
моделі, зокрема Decіsіon Trees та Random Forests, застосування яких дозволило отримати до 93% співпадіння 
реальних та модельних даних. Показано можливості щодо побудови прогнозних карт ґрунтів з використанням 
типового набору матеріалів, які можуть бути доступними ґрунтознавцю в сучасних українських реаліях: 
карти ґрунтова та топографічна і безкоштовне повнофункціональне програмне забезпечення – 
геоінформаційні системи GRASS та Quantum, векторизатор Easy Trace і мова статистичних розрахунків R-
Statіstіc. 
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